
Revista do Instituto Geológico, São Paulo, 23(1), 25-38, 2002.

25

ORE RESERVE ESTIMATION USING RADIAL BASIS FUNCTIONS

Jorge Kazuo YAMAMOTO

RESUMO

Este trabalho apresenta uma aplicação das equações multiquádricas para o cálcu-
lo de reservas minerais. Esse método é comparado com os estimadores tradicionais
usados na indústria mineral: inverso da distância e krigagem ordinária. A função de
base radial com um termo de precisão constante tem uma forma absolutamente equiva-
lente à krigagem ordinária. Nesse sentido, as funções de base radial podem ser poten-
cialmente empregadas para avaliação de reservas minerais. Além disso, as funções de
base radial podem ser adaptadas facilmente para avaliação de blocos tal como a krigagem.
É mostrado também que as funções de base radial são dependentes das unidades das
coordenadas e, dessa forma, as funções base devem ser cuidadosamente escolhidas.
Usando os dados exploratórios do Depósito de Cobre de Chapada, demonstra-se que a
transformação logarítmica das funções base proporciona os melhores resultados quan-
do comparados aos da krigagem ordinária. Assim, as funções de base radial podem ser
aplicadas para estimativa de reservas minerais, tornando-se uma alternativa confiável
para essa finalidade.

Palavras-chave: inverso da distância, krigagem ordinária, função de base radial,
avaliação de reservas minerais, Depósito de Cobre de Chapada.

ABSTRACT

This paper presents an application of multiquadric equations for ore reserve
estimation. This method is compared with available traditional estimators used in the
mining industry: inverse distance weighting and ordinary kriging. Radial basis function
with a constant precision term has a dual form absolutely equivalent to the ordinary
kriging. In this sense, radial basis functions present a potential application for ore
reserve estimation. Besides, radial basis functions can be adapted easily to allow block
estimates as block kriging does. It is shown that radial basis functions  depend on the
metrics of data coordinates and so the basis functions should be carefully chosen. This
paper also discusses kernel transformation for improving radial basis function estimates.
Using the exploration data from the Chapada Copper Deposit, it is shown that logarithmic
transformation of basis functions provides the best results comparable to the ordinary
kriging ones. Thus, radial basis functions can be applied for ore reserve estimation,
becoming a reliable alternative to this task.

Keywords: inverse distance weighting, ordinary kriging, radial basis function,
and ore reserve estimation, Chapada copper deposit.

1  INTRODUCTION

Approximation of a variable at unsampled
points is a common procedure used for computer
aided ore reserve estimation. Usually, a mineral
deposit is discretized in small blocks of dimensions
compatible with the available exploration data. The
discretization is made within recognized boundaries

defined by the exploration data. A certain number of
blocks have to be estimated and their individual ore
reserves determined. The estimation or interpolation
procedure is applied to determine the reserve
parameters for a block using neighboring exploration
data. There are basically two interpolation methods
that have been used for computer aided ore reserve
estimation: inverse distance weighting and ordinary
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kriging. The first method is indicated when available
data do not justify variogram computation and so
the ordinary kriging technique cannot be applied.
The second one has been used extensively by the
mining industry for ore reserve estimation. However,
it is important to mention that interpolation for three-
dimensional data is not limited to these methods.
There are several available methods that could be
applied for ore reserve estimation. One of these
methods is derived from radial basis functions, which
allows approximation of any irregular surface by
means of a sum of a number of kernel surfaces. Radial
basis functions are a generalization of multiquadric
equations, which were firstly  suggested by R.L.
Hardy for the analytical representation of a terrain
surface from discrete data points (HARDY, 1971).
Although radial basis functions have been
developed for interpolation of two-dimensional data,
it can be extended for three-dimensional data as well
as for higher dimensions. This paper presents an
application of radial basis functions for ore reserve
estimation.

2 ORE RESERVE ESTIMATION METHODS

As introduced before the current methods for
ore reserve estimation are: inverse distance
weighting and ordinary kriging.

The inverse distance weighting was among
the first computer-based techniques used in ore
deposit calculations (PHILIP & WATSON, 1987).

Kriging is the standard name given to the
collection of generalized linear regression
techniques for minimizing an estimation variance
defined from a prior covariance model (OLEA, 1991).
There are many different types of kriging methods
depending on objectives, conditions and
constraints for each type. So, kriging with a known
mean receives the name of simple kriging (SK),
kriging for the mean value receives the name of
kriging of the mean (KM), kriging with an estimated
mean receives the name of ordinary kriging (OK),
among other types of available kriging methods.
Details for these different types of kriging can be
found in (WACKERNAGEL, 1995). In this paper
only the ordinary kriging will be considered because
its formulation allows solving most of the ore
reserve estimation problems.

2.1 Inverse distance weighting

The inverse distance weighting is an
interpolation technique for estimating values of

locationally dependent variables by forming a linear
combination of a set of measurements (PHILIP &
WATSON, 1987). The non-negative weights sum up
to one and are inversely related to the distance to
data points (PHILIP & WATSON, 1987). The grade
or any other variable at unsampled points can be
estimated by using the inverse distance weighting
as:
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where di is the distance from each of the n’ sample
locations to the point to be estimated, p is the power
of distance, and F1, ..., Fn’ are the grade values.
Therefore, the normalized weight for the i-th sample
becomes:
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FIGURE 1 - Block estimation by extending the grade
computed in its center.
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For ore reserve estimation this technique was
used for interpolating a point in the center of an
evaluation block (Figure 1). The resulting grade was
extended to the whole block with an associated error
proportional to the block size.

This author (YAMAMOTO, 1996) has
proposed a new method of block calculation using
the inverse distance weighting method, according
to the following equation:
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where iW  is the average of the inverse distance
weighting of the i-th sample in relation to all sub-
blocks. This new method is an adaptation of the
conventional block kriging method, where a block
estimate is equal to the average of point estimates

centered on sub-blocks. So, given a block it is
discretized into nsb sub-blocks of equal size. For
block discretization the limits given by JOURNEL &
HUIJBREGTS (1978) are recommended (Table 1).

Normalized weights between samples and each
sub-block are computed as illustrated in Figure 2.

The normalized weight between i-th sample
and k-th sub-block is:

TABLE 1 - Discretization limits for the discrete
approximation of a block (after JOURNEL &
HUIJBREGTS, 1978).

domain dimension number of points
One 10
Two 6 x 6

Three 4 x 4 x 4

A)

SAMPLE 3

SAMPLE 4

SAMPLE 1

SAMPLE 2

B)

SAMPLE 3

SAMPLE 4

SAMPLE 1

SAMPLE 2

C)

SAMPLE 3
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D)

SAMPLE 3

SAMPLE 4

SAMPLE 1

SAMPLE 2

FIGURE 2 - Computation of normalized weights for each sub-block: A) for the sub-block 1; B) for the sub-block 2; C)
for the sub-block 3; D) for the sub-block 4.
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After the normalized weights for all sub-
blocks have been computed, the average weight for
each sample is computed as follows:
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, for i=1 to n’ (5)

where nsb is the number of sub-blocks.
Expression (5) allows computing the grade of

a block directly as does ordinary kriging. Obviously,
it gives the same result as the average of grades of
nsb sub-blocks. However, the great advantage of
expression (5) is the direct calculation of an estimation
error of inverse distance weighting block estimates,
by means of the interpolation variance as proposed
by this author (YAMAMOTO, 2000) for ordinary
kriging estimates. The interpolation variance of a
block can be computed as:
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Actually, this is an extension of the same
formula used for computing a measure of the
reliability of ordinary kriging estimates. This
extension is valid for inverse distance weighting
because their weights are positive and are
normalized, which assures the positiveness of the
interpolation variance.

2.2 Ordinary kriging

Kriging depends firstly on a structural function
C(h) or γ(h), which describes the spatial correlation
of data points (Figure 3).

Ordinary kriging (OK) is the most widely used
kriging method and is based on local second-order
stationarity (JOURNEL & HUIJBREGTS, 1978).
Ordinary kriging is by excellence the recommended
method for ore reserve estimation, because it was
designed for block evaluation. Indeed, ordinary
kriging was the first method that provided block

computation.
OK estimate is based on weighted average of

available data:
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where the weights {λi, i=1,n’} are determined by the
solution of a kriging system of equations.

In order to ensure unbiasedness of estimates,
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FIGURE 3 - Typical variogram and correspondent
covariance.
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which is known as the non-bias condition (JOURNEL
& HUIJBREGTS, 1978).

On the other hand, ordinary kriging makes
estimation under the condition that the error variance
is minimum. The error variance is:

( ) ( ){ }ooOK x*FxFVar −=2σ (8)

which can be written after ISAAKS & SRIVASTAVA
(1989) as:
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Deriving each term on the right side of (9), we
have:
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Thus, expression (9) becomes:
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Minimization of the error variance (10)
constrained to the unbiasedness condition (7) results
in the following system of ordinary kriging
equations:
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where µ is the Lagrange multiplier.
In the case of block kriging the right side:

( )io xxC −  of the ordinary kriging system (10) is

replaced by ( )io xxC − , i.e. the average covariance
between the i-th point and centers of sub-blocks.

Figure 4 illustrates the process of converting
distances to covariances. Figure 4A shows how to
compute the covariances between sample 1 and all
others. Repeating this process for all samples we
will take into account the mutual dependence among
samples. This feature recognizes spatial clusters and
assigns correct weights to the samples. In Figure 4B
distances between samples and the center of the
block are converted to covariances (point kriging).

 The set of weights {λi, i=1,n’} results from the
solution of the ordinary kriging system (10). These
weights applied to expression (6) give the estimated
value. The error associated with the estimated value
is given by:

( ) ( )∑
=

−−−=
'n

i
ioiOK xxC.C

1

2 0 µλσ (11)

See that the kriging variance is homoscedastic,
i.e. it is independent of the data used to obtain the
estimator F*(xo) (OLEA, 1991). Figure 5 illustrates
why kriging variance should not be used as an
approximation of uncertainty (ARMSTRONG, 1994).

As the data layouts are identical in both cases,
the kriging variances are identical and as it happens,
so are the kriged estimates (ARMSTRONG, 1994).

3  RADIAL BASIS FUNCTIONS

Radial basis functions are a generalization of
the original multiquadric equations (HARDY, 1971).
The basic hypothesis of the multiquadric analysis is
that any smooth mathematical surface, and also any
smooth arbitrary surface (mathematically undefined)
may be approximated to any desired degree of
exactness by the summation of a wide variety of
regular, mathematically defined surfaces, particularly
quadric forms (HARDY, 1977). The quadric forms
are not only the simplest, but also the most efficient
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in converging on irregular surfaces (HARDY, 1977).
Now, the quadric forms are in fact one of the available
kernels of radial basis functions. It is important to
mention that although radial basis functions were
defined on global basis, local approximation can give
reliable results. In this regard, accuracy of
multiquadrics can be improved and computational
effort can be dramatically reduced by transforming a
large global problem into many small quase-local
problems by domain decomposition (KANSA, 1990).

A radial basis function with centers in
{x1,x2,. . . ,xn’} as given in BEATSON & NEWSAM
(1992) is represented as:
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where n’ is the number of neighboring points and f
is a symmetric radial function in Rn. Indeed, this is
the form originally proposed by HARDY (1971), but
a more general form has been proposed by other
authors (CARLSON & FOLEY 1992, GIROSI 1992,
MYERS 1992), which includes a second summation
for equation (12) as:
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where pj(x), j=0,..,k are the polynomial terms in the
position coordinates of x. Solution for this system
of equations requires the following set of constraints:
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Addition of polynomial terms does not mean a
precision improvement, because it may degrade the
accuracy of the interpolant on some data sets
(CARLSON & FOLEY, 1992). Thus, some authors
(MICCHELLI 1986, MADYCH 1992) have used the
expression (12) with just a term of degree 0 added:
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where ao is also known as the constant term. Addition
of the constant term requires the constant precision
constraint (FOLEY, 1992):
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Addition of a constant term improves the
precision of radial basis function, especially when
n’ (number of neighboring data-values) is small.
Actually, ao represents the local mean of data values
as implicit in ordinary kriging (WACKERNAGEL,
1995). Therefore, radial basis function when
represented as (13) is very similar to ordinary kriging,
as it will be shown hereafter.

There are several options for basis
function ( )φ , as described by KANSA (1990) and
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FIGURE 4 - Converting distances to covariances: A)
between sample 1 and all others and B) between samples
and the block center.
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FIGURE 5 - Estimation of blocks from the same
configuration of data points. See that in (A) the estimation
variance should be less than in (B). After ARMSTRONG
(1994).
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Replacing (16) in (15) we have:

  (17)

which is known in geostatistics as the dual system
(WACKERNAGEL, 1995). In fact the dual system
has been introduced by HARDY (1977) to compare
covariance and multiquadric methods.

Now weights of radial basis functions in the
dual form can be expressed as:

(18)

where µ is a constant introduced so that the equality
becomes possible.

Equation (18) can also be written as:

(19)

BEATSON & NEWSAN (1992), but the most used
are:

Linear: ( ) xx =φ

Cubic: ( ) 3xx =φ
Generalized multiquadric:
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2

12
2

+

+=
k

xcxφ , for k=-1,0,...,

Splines: ( ) xlogxx 2=φ

Gaussian: ( ) ( )2xcexpx −=φ

where •  denotes norm of a vector in Rn and c is a

positive constant.
For the generalized multiquadric, when k is –1

we have the reciprocal multiquadric kernel and when
k is equal to zero we obtain the original multiquadric
kernel (HARDY, 1971).

Among available radial basis functions the
multiquadric kernel is the most widely used,
because it always guarantees a non-singular
matrix of coefficients. Splines and cubic kernels
call for coordinate transformation (usually
normalization) because they rise rapidly with x
and so they are not convenient for ore reserve
estimation. In this regard, the performance of
multiquadrics is sensitive to scaling, i.e. it is
important to the condition number whether
distances are expressed in centimeters or meters
(KANSA, 1990).

Now we can show that radial basis functions
expressed as (13) are equivalent to the ordinary
kriging. Expression (13) can also be written as:
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The coefficients {c1,c2,...,cn’} and the constant
term ao result from the following system of linear
equations:
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Transposing both sides of equation (19) it
becomes:

or
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Therefore, radial basis function estimator when
represented as dual form (17) is similar to the ordinary
kriging estimator (6), as well as their corresponding
systems of linear equations (20) and (10). Thus, the
introduction of a constant term to the radial basis
function implies in the following condition:

1
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that is no other than the unbiasedness condition
suggested by SIRAYANONE (1988).

Radial basis functions as well as the inverse
distance weighting depend only on distance
measurements and so they are easily generalized to
higher dimensional spaces (BARNHILL, 1993).
Therefore, these methods can be adapted directly to
solve problems in ore reserve estimation, where the
data-values are usually in the three-dimensional
space. Ordinary kriging calls for a three-dimensional
variogram.

See that the system of equations (20)
corresponds to a point estimator rather than to an
estimator of a spatial average such as the average
grade of a block, but the extension to spatial averages
is relatively easy in the kriging form of the estimator
(MYERS, 1992). So, for block estimation using radial
basis functions, replace the right side of the system
of linear equations (20) by the average basis values,
as follows:
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1 φφ  for i=1 to n’.

4 A CASE STUDY IN THE CHAPADA
COPPER DEPOSIT

As a case study it was considered the
exploration data from the Chapada Copper Deposit.
This deposit is located at municipality of Mara Rosa,
State of Goiás, Brazil, according to the location map
of Figure 6.

The exploration data, considered in this paper,
come from 141 drill holes (Figure 7) which totalizes
16315.80 meters of continuous sampling. A total of
10504 samples analysed for copper were composited
to a bench height of 10 meters resulting in 1596
composite samples and they will be the database for
this study. Figure 8 shows copper grade distribution
with its statistics.

So, given the boundaries of mineralization
(Figure 7), the deposit is discretized into blocks of
compatible dimensions with the exploration data,
defined to be 100 x 100 x 10 m (width x length x height).
The block model for the Chapada Copper Deposit is
shown in Figure 9.

Geostatistical analysis carried out using
copper exploration data resulted in the following
covariogram model:
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FIGURE 6 - Location map of the Chapada Copper
Deposit.
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Geometrical anisotropy (parallel to the
coordinate axes) was recognized according to the
anisotropy ratios of Table 2.

Now we have the necessary elements to
perform grade estimation in blocks or at points by
ordinary kriging and make comparisons with radial
basis functions.

4.1  Choosing a basis function

The first step for radial basis function
interpolation is related to choosing an adequate
kernel or basis function. This step corresponds to
the variogram modeling for ordinary kriging
estimation. Among several available options for basis
functions we have to choose one, which could give
unbiased results. Moreover, in geology we also have
to consider the geological correlation between
samples, i.e. there is a maximum distance within which
samples present a correlation. Beyond this maximum
distance samples are not correlated, when changes
in composition, lithology and other physical and
chemical properties usually occur and, therefore,
cannot be predicted. Therefore, a maximum distance
between samples and the point to be interpolated
should be taken into account. For the case study, as
we have a covariogram model, a maximum distance
equal to 450 m (corresponding to the variogram
range) will be used.

Our main concern when choosing a basis
function is related to the metrics involved, because
distances between samples are measured in meters
(tens to hundreds of meters). So, some basis
functions like cubic and splines are not convenient,
because the rounding errors in the floating-point
arithmetic can lead to innacurate results.

The cross validation method was adopted as a
standard testing procedure to choose a basis
function. This procedure consists of removing each

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

-600

-500

-400

-300

-200

-100

0

100

200

0 200m

DRILL HOLES

N

FIGURE 7 - Location map of drill holes from Chapada Copper Deposit and boundaries of mineralization.

TABLE 2 - Anisotropy ratios for the copper
semivariograms.

direction anisotropy ratio
horizontal 2.25

vertical 4.50
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FIGURE 8 - Histogram and statistics for composite copper.
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sample from the database in turn and estimating the
value at that location using n’ neighboring points.
So, for each point we have the actual: F(xi) and
estimated: F*(xi) values which can be compared,
giving us an indication of how well the basis function
fits into the data. Some statistics can be computed
from the difference between true and estimated
values such as: correlation coefficient and RMS error.

RMS error (MADYSH, 1992) was computed
using:

( ) ( )[ ]∑
=

−=
N

i
ii x*FxF

N
RMS

1

21

which measures the dispersion of estimated values
around true ones. Another way for evaluating basis
function can be done by determining the condition
number of a matrix of the system of equations (20).
The condition number of matrix tells us how
invertible the matrix is. If the condition number is
infinite the matrix is singular, and ill-conditioned if it
is too large (PRESS et al., 1989). A procedure available
in PRESS et al. (1989) for singular value
decomposition was used to compute the condition
number of a matrix.

So, several simulations were carried out for
the Chapada database in order to choose a
multiquadric constant (c), which would give the
minimum RMS error. In these simulations c values
ranging from 1 to 10000 were used. Figure 10A shows
RMS error as a function of the multiquadric constant
c. In such figure we observe that the multiquadric
constant should be chosen as small as possible. It is
important to mention that the multiquadric constant

only causes round off errors and it practically does
not affect the condition number of the matrix as
shown in Figure 10B, with magnitudes ranging from
105 to 106. In Figure 10 both RMS error and condition
number are represented as their averages coming
from 1596 interpolated points.

According to obtained results from cross
validation tests, the multiquadric constant must be
as small as possible. Therefore, we have adopted a
constant equal to 1, which best fits to the exploration
data from Chapada. Actually, we will adopt hereafter
in this paper the translated linear kernel:
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FIGURE 9 - Three-dimensional model of blocks for the
Chapada Copper Deposit and the block 3176.
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( ) 1+= xxφ .  Now we are interested in
comparative tests between different interpolation
techniques: inverse distance weighting, ordinary
kriging and radial basis function with the translated
linear kernel. In case of the inverse distance
weighting a power of distance equal to 2 was
considered. Table 3 presents the statistics for cross
validation tests.

Scattergrams for the cross validation results
are presented in Figure 11.

The best result is achieved with ordinary
kriging, followed by radial basis functions and finally
by inverse distance weighting. When using radial
basis functions the metrics involved is important
and it will govern the accuracy of the estimates. So,
in order to improve the estimates using radial basis
functions some transformations on the translated

TABLE 3 - Statistics of cross validation tests for the Chapada data base.

Method Parameter Correlation RMS error
coefficient

inverse distance weighting p=2 0.748 0.140
Ordinary kriging covariance function 0.757 0.137
radial basis function translated linear kernel 0.751 0.139

TABLE 4 - Statistics of cross validation tests using radial basis functions with transformed kernels.

Transformed kernel Correlation coefficient RMS error Condition number
Square root 0.757 0.137 1.31912E03
Natural logarithm 0.761 0.136 2.44678E02
Decimal logarithm 0.761 0.136 4.79738E01

FIGURE 11 -  Scattergrams for cross validation results using: A) inverse distance weighting; B) ordinary kriging and C)
radial basis functions with translated linear kernel.
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linear kernel were considered. These transforms are
as follows:

Square root:

( ) 1+= xxφ

Natural logarithm: ( ) ( )1+= xlnxφ

Decimal logarithm: ( ) ( )1+= xlogxφ  

Transformed kernels are illustrated in Figure 12.
Table 4 presents computed statistics on

scattergrams as well as the average condition number
for estimates using radial basis functions with
transformed kernels. As we can see, transformed

kernels present average condition number much
lesser than the multiquadric kernel. It means that
besides the inversion problem on matrix of the
system of equations (20), the round off errors as
seen in Figure 10A can be avoided.

Figure 13 presents scattergrams of cross
validation tests using radial basis functions with
transformed kernels.

Indeed transformed kernels improve estimates
as shown in scattergrams of Figure 13, because the
accuracy of the radial basis functions depends
strongly on the metrics used. Moreover, transformed
kernels effectively diminish the condition number of
matrix (Table 4). So, as we can see it is nonsense to
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FIGURE 13 - Scattergrams for cross validation results using transformed kernels: A) square root; B) natural logarithm,
C) decimal logarithm.
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consider other kernels like cubic and splines, because
they rise rapidly with x . Therefore, all the
transformations were done over the translated linear
kernel. See that the transformed kernels limit the
influence of far samples as well as the variogram
does.

Considering that ordinary kriging gives the
best results, let us compare it with inverse distance
weighting and radial basis functions with no
transformation (Figure 14).

Figure 14 shows that both methods provide
biased estimates in relation to the ordinary kriging.
Therefore, they cannot be used for reliable ore
reserve estimation. Now let us verify if the
transformed kernels provide better results than
kernels with no transformation. Figure 15 presents
scattergrams of ordinary kriging estimates against
radial basis functions using transformed kernels.

As we can see square root is not an effective
transformation for the database of the study case,
because of the metrics involved (hundreds of meters).
On the other hand, natural and decimal logarithms
are the most effective giving the best results. Both
give almost unbiased and basically the same results,
which proves that kernel transformation provides
good estimates comparable to the ordinary kriging
results. The dispersion around the bisector may be
due to the differences between spherical covariance
(kernel for ordinary kriging) and transformed kernel
(natural or decimal logarithm). Moreover, there is also
the correction for geometrical anisotropy done by
ordinary kriging while radial basis functions do not.

Radial basis functions with appropriate kernels
give reliable results being comparable to the ordinary
kriging ones. Hence, radial basis function is another

method available for ore reserve estimation.

5 CONCLUDING REMARKS

Radial basis function estimator with a constant
precision term has a dual form absolutely equivalent
to the ordinary kriging estimator. Hence, radial basis
function arises as an alternative method to ordinary
kriging, especially in cases where experimental
variograms cannot be computed from data points.
This method is much better than the inverse distance
weighting, which has been used as an alternative to
the ordinary kriging. Radial basis function is superior
to the inverse distance weighting, because it can
recognize clustered points giving adequate weights
according to their spatial configuration, such as
done by ordinary kriging. Accurate results from radial
basis function estimates depend strongly on metrics
involved and also on kernels. The linear kernel with
a logarithmic transformation gives the best result
for exploration data from the Chapada Copper
Deposit, as confirmed by average condition number
of matrices.
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