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ORERESERVE ESTIMATION USINGRADIAL BASISFUNCTIONS

JorgeKazuo YAMAMOTO

RESUMO

Estetrabalho apresentaumaaplicacéo das equacdes multiquédricas para o cél cu-
lo de reservas minerais. Esse método é comparado com os estimadores tradicionais
usados naindistria mineral: inverso da distancia e krigagem ordin&ria. A funcdo de
base radial com um termo de precisdo constante tem umaformaabsol utamente equiva-
lente a krigagem ordinéria. Nesse sentido, as fungdes de base radial podem ser poten-
cialmente empregadas para avaliagdo de reservas minerais. Além disso, as fun¢bes de
baseradial podem ser adaptadasfacilmente paraavaliacdo de blocostal como akrigagem.
E mostrado também que as funcdes de base radial 30 dependentes das unidades das
coordenadas e, dessa forma, as fungdes base devem ser cuidadosamente escolhidas.
Usando os dados exploratérios do Depdsito de Cobre de Chapada, demonstra-se que a
transformacao | ogaritmica das funcbes base proporciona os mel hores resultados quan-
do comparados aos dakrigagem ordinaria. Assim, as funcdes de baseradial podem ser
aplicadas para estimativa de reservas minerais, tornando-se uma alternativa confiavel
paraessafinalidade.

Palavras-chave: inverso dadistancia, krigagem ordinéria, funcdo de baseradial,
avaliacdo de reservas minerais, Deposito de Cobre de Chapada.

ABSTRACT

This paper presents an application of multiquadric equations for ore reserve
estimation. This method is compared with available traditional estimators used in the
mining industry: inverse distance weighting and ordinary kriging. Radial basisfunction
with a constant precision term has a dual form absolutely equivalent to the ordinary
kriging. In this sense, radial basis functions present a potential application for ore
reserve estimation. Besides, radial basisfunctions can be adapted easily to allow block
estimates as block kriging does. It is shown that radial basis functions depend on the
metrics of data coordinates and so the basis functions should be carefully chosen. This
paper also discusseskernel transformation for improving radial basisfunction estimates.
Using the exploration datafrom the Chapada Copper Deposit, it isshown that logarithmic
transformation of basis functions provides the best results comparable to the ordinary
kriging ones. Thus, radial basis functions can be applied for ore reserve estimation,
becoming areliable aternative to thistask.

Keywords: inverse distance weighting, ordinary kriging, radial basis function,
and ore reserve estimation, Chapada copper deposit.

1 INTRODUCTION

Approximation of a variable at unsampled
points is a common procedure used for computer
aided ore reserve estimation. Usually, a mineral
depositisdiscretized in small blocks of dimensions
compatiblewith the available exploration data. The
discretization ismade within recognized boundaries

defined by the exploration data. A certain number of
blocks have to be estimated and their individual ore
reservesdetermined. The estimation or interpolation
procedure is applied to determine the reserve
parametersfor ablock using neighboring exploration
data. There are basically two interpolation methods
that have been used for computer aided ore reserve
estimation: inverse distance weighting and ordinary
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kriging. Thefirst method isindicated when available
data do not justify variogram computation and so
the ordinary kriging technique cannot be applied.
The second one has been used extensively by the
miningindustry for orereserve estimation. However,
itisimportant to mention that interpolation for three-
dimensional data is not limited to these methods.
There are several available methods that could be
applied for ore reserve estimation. One of these
methodsisderived from radial basisfunctions, which
alows approximation of any irregular surface by
means of asum of anumber of kernel surfaces. Radia
basis functions are ageneralization of multiquadric
equations, which were firstly suggested by R.L.
Hardy for the analytical representation of aterrain
surface from discrete data points (HARDY, 1971).
Although radial basis functions have been
developed for interpol ation of two-dimensional data,
it can be extended for three-dimensional dataaswell
as for higher dimensions. This paper presents an
application of radial basisfunctionsfor ore reserve
estimation.

2 ORERESERVE ESTIMATION METHODS

Asintroduced before the current methods for
ore reserve estimation are: inverse distance
weighting and ordinary kriging.

The inverse distance weighting was among
the first computer-based techniques used in ore
deposit calculations (PHILIP & WATSON, 1987).

Kriging is the standard name given to the
collection of generalized linear regression
techniques for minimizing an estimation variance
defined from aprior covariancemodel (OLEA, 1991).
There are many different types of kriging methods
depending on objectives, conditions and
constraintsfor each type. So, kriging with aknown
mean receives the name of simple kriging (SK),
kriging for the mean value receives the name of
kriging of the mean (KM), kriging with an estimated
mean receives the name of ordinary kriging (OK),
among other types of available kriging methods.
Details for these different types of kriging can be
found in (WACKERNAGEL, 1995). In this paper
only theordinary kriging will be considered because
its formulation allows solving most of the ore
reserve estimation problems.

2.1 Inverse distance weighting

The inverse distance weighting is an
interpolation technique for estimating values of
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|ocationally dependent variablesby forming alinear
combination of a set of measurements (PHILIP &
WATSON, 1987). The non-negative weights sum up
to one and are inversely related to the distance to
datapoints (PHILIP& WATSON, 1987). Thegrade
or any other variable at unsampled points can be
estimated by using the inverse distance weighting
as.

1,
=dP . )
F*:'*ln,—'llfdi #0 fori=1n'
2 as e
F*=F ifd, =0

where d, is the distance from each of the n’ sample
locationsto the point to be estimated, p isthe power
of distance, and F,, ..., F are the grade values.
Therefore, the normalized weight for thei-th sample
becomes:
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FIGURE 1 - Block estimation by extending the grade
computed in its center.
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For ore reserve estimation this technique was
used for interpolating a point in the center of an
evaluation block (Figure 1). Theresulting gradewas
extended to thewhol e block with an associated error
proportional to the block size.

This author (YAMAMOTO, 1996) has
proposed a new method of block cal culation using
the inverse distance weighting method, according
to the following equation:

F* =;N.Fi &)

where VVI is the average of the inverse distance

weighting of the i-th sample in relation to all sub-

centered on sub-blocks. So, given a block it is
discretized into nsb sub-blocks of equal size. For
block discretization thelimitsgiven by JOURNEL &
HUIJBREGTS(1978) arerecommended (Table 1).

Normalized weights between samplesand each
sub-block are computed asillustrated in Figure 2.

The normalized weight between i-th sample
and k-th sub-block is:

TABLE 1 - Discretization limits for the discrete
approximation of a block (after JOURNEL &
HUIBREGTS, 1978).

domain dimension number of points

One 10
blocks. This new method is an adaptation of the Two 6x6
conventional block kriging method, where a block
estimate is equal to the average of point estimates Three 4x4x4

B
A) SAMPLE 1 ) SAMPLE 1
SAMPLE 2 SAMPLE 2
SAMPLE 4 SAMPLE 4
SAMPLE 3 SAMPLE 3
C) D)
SAMPLE 1 SAMPLE 1
SAMPLE 2 SAMPLE 2
SAMPLE 4 SAMPLE 4
SAMPLE 3 SAMPLE 3

FIGURE 2 - Computation of normalized weightsfor each sub-block: A) for the sub-block 1; B) for the sub-block 2; C)

for the sub-block 3; D) for the sub-block 4.
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1 @

After the normalized weights for al sub-
blocks have been computed, the average weight for
each sampleis computed asfollows:

1 nsh

W =—
nsb &=

Wi fori=1ton ©)

where nsb is the number of sub-blocks.

Expression (5) alows computing the grade of
ablock directly asdoesordinary kriging. Obviously,
it gives the same result as the average of grades of
nsb sub-blocks. However, the great advantage of
expression (5) isthedirect calculation of an estimation
error of inverse distance weighting block estimates,
by means of the interpolation variance as proposed
by this author (YAMAMOTO, 2000) for ordinary
kriging estimates. The interpolation variance of a
block can be computed as:

st = > Wi(F -F
i=1

Actualy, this is an extension of the same
formula used for computing a measure of the
reliability of ordinary kriging estimates. This
extension is valid for inverse distance weighting
because their weights are positive and are
normalized, which assures the positiveness of the
interpolation variance.

2.2 Ordinary kriging

Kriging dependsfirstly onastructural function
C(h) or y(h), which describes the spatial correlation
of datapoints (Figure 3).

Ordinary kriging (OK) isthemost widely used
kriging method and is based on local second-order
stationarity (JOURNEL & HUIJBREGTS, 1978).
Ordinary kriging isby excellence the recommended
method for ore reserve estimation, because it was
designed for block evaluation. Indeed, ordinary
kriging was the first method that provided block
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FIGURE 3 - Typical variogram and correspondent
covariance.

computation.
OK estimate is based on weighted average of
available data:

F*(xo)=iii F(x) ©)

wheretheweights{2,,i=1,n'} aredetermined by the
solution of akriging system of equations.

In order to ensure unbiasedness of estimates,

the expected value of the error [F*(x, ) F(x, )] is
set to zero:

E{F*(Xo)_ F(Xo )}: O’

which can be developed as.

E{gﬂiF(Xi )}z E{F(x,)}

3. ElF () ~EF (o)

since E{F(x;)}=m and E{F(x,)}=m then

el @
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whichisknown asthe non-bias condition (JOURNEL
& HUIBREGTS, 1978).

On the other hand, ordinary kriging makes
estimation under the condition that the error variance
isminimum. Theerror varianceis:

ol =Var{F(x,)-F*(x,)} ®

which can bewritten after ISAAKS & SRIVASTAVA
(1989) as:

o2 =Cov{F(x, JF(x, )}
—2Cov{F *(x, JF(x, )}

+Cov{F * (x, JF * (x, )} 9

Deriving eachterm on theright side of (9), we
have:

2Cov{F (%, JF (x,)}= 2‘30"{ LA } }

_ZE{ZAF x)} ZE{ZAF }E
_22/1E JF(x, ) -2>" AE{F(x JE{F
—221 X)}—E{F(X.)}E{F(X )}]
—ZZAIC X, —x,)

COV{F "(x, )F " (x, )}:Var {F "(x, )}
=Var{Z ZF(x, )}
:Z;,zi,ajc(xi -x,)

Thus, expression (9) becomes:

ZEM«;C(& - Xj)

obc =C(0)- 2 AC(x, —x )+

Minimization of the error variance (10)
constrained to the unbiasedness condition (7) results
in the following system of ordinary kriging
equations:

Zﬂjc(xj _Xi)+#=C(X0 —x;), for i=1n

]
> a=1
i

(10)

where uisthe Lagrange multiplier.
In the case of block kriging the right side:
C(x, —

0

X; ) of the ordinary kriging system (10) is

replacedby C (X0 -
between the i-th point and centers of sub-blocks.

Figure 4 illustrates the process of converting
distances to covariances. Figure 4A shows how to
compute the covariances between sample 1 and all
others. Repeating this process for all samples we
will takeinto account the mutual dependenceamong
samples. Thisfeature recognizes spatial clustersand
assigns correct weightsto the samples. In Figure 4B
distances between samples and the center of the
block are converted to covariances (point kriging).

Theset of weights{A,,i=1,n"} resultsfromthe
solution of the ordinary kriging system (10). These
weights applied to expression (6) givethe estimated
value. Theerror associated with the estimated value
isgiven by:

Xi ) ,1.e. theaverage covariance

n

0% = C(O)_Zﬂi -C(Xo —%)-p

i=1

(1)

Seethat thekriging varianceishomoscedastic,
i.e. it isindependent of the data used to obtain the
estimator F*(x ) (OLEA, 1991). Figure5illustrates
why kriging variance should not be used as an
approximation of uncertainty (ARMSTRONG 1994).

Asthedatalayoutsareidentical in both cases,
thekriging variancesareidentical and asit happens,
so arethekriged estimates (ARMSTRONG, 1994).

3 RADIAL BASISFUNCTIONS

Radial basis functions are a generalization of
theoriginal multiquadric equations(HARDY, 1971).
Thebasic hypothesis of the multiquadric analysisis
that any smooth mathematical surface, and also any
smooth arbitrary surface (mathematically undefined)
may be approximated to any desired degree of
exactness by the summation of a wide variety of
regular, mathematically defined surfaces, particularly
quadric forms (HARDY, 1977). The quadric forms
arenot only the simplest, but a so the most efficient
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FIGURE 4 - Converting distances to covariances: A)
between sample 1 and all others and B) between samples
and the block center.

A) B)
1 11
8 ? 9 1 ? 0
12 37

FIGURE 5 - Estimation of blocks from the same
configuration of datapoints. Seethat in (A) the estimation
variance should belessthanin (B). After ARMSTRONG
(1994).

inconverging onirregular surfaces(HARDY, 1977).
Now, thequadric formsareinfact oneof theavailable
kernels of radial basis functions. It isimportant to
mention that although radial basis functions were
defined on global basis, local approximation can give
reliable results. In this regard, accuracy of
multiquadrics can be improved and computational
effort can be dramatically reduced by transforming a
large global problem into many small quase-loca
problems by domain decomposition (KANSA, 1990).

A radial basis function with centers in
{X,X,. .. X} asgivenin BEATSON & NEWSAM
(1992) isrepresented as:

30

(1)

0= Y e ol )

wheren’ isthe number of neighboring points and f
isasymmetric radia function in R". Indeed, thisis
theform originally proposed by HARDY (1971), but
a more general form has been proposed by other
authors (CARLSON & FOLEY 1992, GIROSI 1992,
MY ERS 1992), which includes a second summation
for equation (12) as:

F* (Xo): gci -¢(Xi - Xo)+gai -Pj (X)

wherep(x), j=0...,k arethe polynomial termsin the
position coordinates of x. Solution for this system
of equationsrequiresthefollowing set of constraints:

zcipj(X)ZO, j=0,...,k
i1

Addition of polynomial termsdoesnot mean a
precision improvement, because it may degrade the
accuracy of the interpolant on some data sets
(CARLSON & FOLEY, 1992). Thus, some authors
(MICCHELLI 1986, MADY CH 1992) have used the
expression (12) with just aterm of degree 0 added:

Fr(x,)= Y c 00 -x)+a, g

wherea, isalso known asthe constant term. Addition
of the constant term requires the constant precision
congtraint (FOLEY, 1992):

14

ici =0
i=1

Addition of a constant term improves the
precision of radial basis function, especialy when
n’ (number of neighboring data-values) is small.
Actualy, a representsthelocal mean of datavalues
asimplicitin ordinary kriging (WACKERNAGEL,
1995). Therefore, radial basis function when
represented as (13) isvery similar to ordinary kriging,
asit will be shown heresfter.

There are several options for basis
function (¢, as described by KANSA (1990) and



Revista do Instituto Geolégico, S&o Paulo, 23(1), 25-38, 2002.

BEATSON & NEWSAN (1992), but the most used
ae

Linear: #(x)= |X|
Cubic: #(x)= |X|3
Generdized multiquadric:
(2k+1)
¢(x) = (C + |X|2 )T ,fork=-1,0.,...,
splines  ¢(x)=[xlog|x

Gaussan:  ¢(x)= exp(— c|x|2)

where |0| denotes norm of avectorinR"and cisa

positive constant.

For the generalized multiquadric, whenk is—1
we havethereciprocal multiquadric kernel and when
k isequal to zero we obtain the original multiquadric
kernd (HARDY, 1971).

Among availableradial basisfunctionsthe
multiquadric kernel is the most widely used,
because it always guarantees a non-singular
matrix of coefficients. Splinesand cubic kernels
call for coordinate transformation (usually
normalization) because they riserapidly with |
and so they are not convenient for ore reserve
estimation. In this regard, the performance of
multiquadrics is sensitive to scaling, i.e. it is
important to the condition number whether
distances are expressed in centimeters or meters
(KANSA, 1990).

Now we can show that radial basis functions
expressed as (13) are equivalent to the ordinary
kriging. Expression (13) can also bewritten as:

Thecoefficients{c,,c,,...,c .} andthe constant
term @, result from the following system of linear
equations:

Replacing (16) in (15) we have:

Fr(x,)=[p(x, =x) g, =x;,) -~ ¢(x,~x,) -
px —x) dx,—%x,) - dx,-x,) 1] [F
¢(X2 ._ Xl) ¢(X2 _ Xz) ¢(X2 _ Xn') 1 F.z

¢(Xn'_xl) ¢(Xn'_xz) ¢(Xn'_xn') 1 Fn'
1 1 1 0 0

17

which is known in geostatistics as the dual system
(WACKERNAGEL, 1995). In fact the dual system
has been introduced by HARDY (1977) to compare
covariance and multiquadric methods.

Now weights of radial basis functions in the
dual form can be expressed as:

[Wl W, = W, ,u]:

p(x, = %) olx,=x)) - olx,-x,) 1]
_¢(x1—xl) ¢(x1—x2) ¢x1_xn) 17
¢(x2 _“xl) ¢(x2 - xz)

(18)

where n isaconstant introduced so that the equality
becomes possible.

Equation (18) can also be written as:

[Wl W, - W, x”]-
¢(X1 - Xl) ¢(X1 - Xz) ¢(X1 — X, ) 1
¢(X2 ‘_ Xl) ¢(X2 _ Xz) ¢(X2 _ X, ) 1
o) Bl x) ol —x,) 1

1 1 1 0
=[p(x, = x) Bx, =%,) - Bx,—x,) 1
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Transposing both sides of equation (19) it
becomes:

¢(X1_X1) ¢(X1_X2) ¢(X1_Xn') 1 Wy ¢(X0_X1)
¢(X2._X1) ¢(X2._X2) ¢(X2._Xn') l V\.’z ¢(X0.—X2)
ooty %) dl,=x) - o -n,) 1w | | o, —x,)
1 1 1 0|u 1
or
(20

Therefore, radial basisfunction estimator when
represented asdual form (17) issimilar totheordinary
kriging estimator (6), aswell astheir corresponding
systems of linear equations (20) and (10). Thus, the
introduction of a constant term to the radial basis
functionimpliesin thefollowing condition:

iwi =1
i=1

that is no other than the unbiasedness condition
suggested by SIRAYANONE (1988).

Radial basis functions as well as the inverse
distance weighting depend only on distance
measurements and so they are easily generalized to
higher dimensional spaces (BARNHILL, 1993).
Therefore, these methods can be adapted directly to
solve problemsin orereserve estimation, where the
data-values are usualy in the three-dimensional
space. Ordinary kriging callsfor athree-dimensiona
variogram.

See that the system of equations (20)
corresponds to a point estimator rather than to an
estimator of a spatial average such as the average
grade of ablock, but the extensionto spatial averages
isrelatively easy inthekriging form of the estimator
(MYERS, 1992). So, for block estimation using radia
basis functions, replace the right side of the system
of linear equations (20) by the average basisvalues,
asfollows:

ij¢(xj =X )+ﬂ=¢7(xo _Xi)'
ij =1

for i=1,n

)
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where 5(Xo - Xi): EZ¢(X0J - Xi)fori:lton'.

=L

4 ACASESTUDY IN THE CHAPADA
COPPER DEPOSIT

As a case study it was considered the
exploration datafrom the Chapada Copper Deposit.
Thisdepositislocated at municipality of MaraRosa,
State of Goiés, Brazil, according to thelocation map
of Figure®6.

Theexploration data, considered in this paper,
comefrom 141 drill holes (Figure 7) which totalizes
16315.80 meters of continuous sampling. A total of
10504 samples analysed for copper were composited
to a bench height of 10 meters resulting in 1596
composite samplesand they will bethe database for
this study. Figure 8 shows copper grade distribution
with its statistics.

So, given the boundaries of mineralization
(Figure 7), the deposit is discretized into blocks of
compatible dimensions with the exploration data,
defined tobe100x 100x 10 m (width x length x height).
Theblock model for the Chapada Copper Deposit is

owpinFgured, i-
ifwyg%eg@ta{fis??é’al XgﬁnalyfsolrsI cgr]ried out using
doppet exploration data resulted in the following
covariogram model:

52° 50° 48° 46°

STATE OF
TOCANTINS

STATE OF J1ao
MATO
GROSSO

STATE OF
MATO GROSSO
DO SUL

FIGURE 6 - Location map of the Chapada Copper
Deposit.
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FIGURE 7 - Location map of drill holes from Chapada Copper Deposit and boundaries of mineralization.

(%) Now we have the necessary elements to
15 perform grade estimation in blocks or at points by
Number of Data = 1596 . .. . . .
Mean = 0280 ordinary kriging and make comparisonswith radial
L o aton = 0 . .
- Goalfdont of aration= 0743 basis functions.
101 M Maximum = 1724
B (V] Quartil = 0372 . . .
Modan = 0231 4.1 Choosing abasisfunction
Lower Quartile = 0.124
Minimum = 0.011
L The first step for radial basis function
571 interpolation is related to choosing an adequate
kernel or basis function. This step corresponds to
the variogram modeling for ordinary kriging
0 | ; . estimation. Among several available optionsfor basis
0.00 0.50 1.00 1.50 PEZF-;JO functions we have to choose one, which could give
COP

FIGURE 8 - Histogram and statisticsfor composite copper.

TABLE 2 - Anisotropy ratios for the copper
semivariograms.

direction anisotropy ratio
horizontal 225
vertical 450
3
C(h)=0.027 1-3(h +1(hj if a < 450m
2\a) 2\a

c(h)=0 if a > 450m

&)

Geometrical anisotropy (parallel to the
coordinate axes) was recognized according to the
anisotropy ratios of Table 2.

unbiased results. Moreover, in geology wea so have
to consider the geological correlation between
samples, i.e. thereisamaximum distancewithinwhich
samples present acorrelation. Beyond thismaximum
distance samples are not correlated, when changes
in composition, lithology and other physical and
chemical properties usually occur and, therefore,
cannot bepredicted. Therefore, amaximum distance
between samples and the point to be interpolated
should be taken into account. For the case study, as
we have acovariogram model, amaximum distance
equal to 450 m (corresponding to the variogram
range) will be used.

Our main concern when choosing a basis
functionisrelated to the metrics involved, because
distances between samples are measured in meters
(tens to hundreds of meters). So, some basis
functionslike cubic and splines are not convenient,
because the rounding errors in the floating-point
arithmetic can lead to innacurate results.

The cross validation method was adopted asa
standard testing procedure to choose a basis
function. This procedure consists of removing each
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FIGURE 9 - Three-dimensional model of blocks for the
Chapada Copper Deposit and the block 3176.

sample from the database in turn and estimating the
value at that location using n’ neighboring points.
So, for each point we have the actual: F(x) and
estimated: F*(x) values which can be compared,
giving usan indication of how well thebasisfunction
fits into the data. Some statistics can be computed
from the difference between true and estimated
vauessuch as: correlation coefficient and RM Serror.

RMSerror (MADY SH, 1992) was computed
using:

s | L[ ) )]

which measures the dispersion of estimated values
around true ones. Another way for evaluating basis
function can be done by determining the condition
number of amatrix of the system of equations (20).
The condition number of matrix tells us how
invertible the matrix is. If the condition number is
infinitethematrix issingular, andill-conditioned if it
istoolarge(PRESSet d., 1989). A procedureavailable
in PRESS et al. (1989) for singular value
decomposition was used to compute the condition
number of amatrix.

So, several simulations were carried out for
the Chapada database in order to choose a
multiquadric constant (c), which would give the
minimum RM S error. In these ssimulations ¢ values
ranging from 1 to 10000 were used. Figure 10A shows
RMSerror asafunction of the multiquadric constant
c. In such figure we observe that the multiquadric
constant should be chosen as small aspossible. Itis
important to mention that the multiquadric constant
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FIGURE 10 - Influence of the multiquadric constant over
estimates as measured by RMS error (A) and over
condition number of matrices (B).

only causes round off errors and it practically does
not affect the condition number of the matrix as
shownin Figure 10B, with magnitudesranging from
10°to 10°. In Figure 10 both RM Serror and condition
number are represented as their averages coming
from 1596 interpolated points.

According to obtained results from cross
validation tests, the multiquadric constant must be
as small as possible. Therefore, we have adopted a
constant equal to 1, which best fitsto the exploration
datafrom Chapada. Actualy, wewill adopt hereafter
in this paper the translated linear kernel:
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TABLE 3 - Statistics of cross validation tests for the Chapada data base.

Method Parameter Correlaion RMSerror
coefficient

inverse distance weighting p=2 0.748 0.140

Ordinary kriging covariance function 0.757 0137

radial basis function translated linear kernel 0.751 0139

TABLE 4 - Satistics of cross validation tests using radial basis functions with transformed kernels.

Transformed kernd Corrédlation coefficient RMSerror Condition number
Square root 0.757 0137 1.31912E03
Natural logarithm 0.761 0136 244678E02
Decimal logarithm 0.761 0136 4.79738E01

0.50

TRUE VALUE

150 0 0.50

1 150 o 0.50 1 1.50

ESTIMATED VALUE

FIGURE 11 - Scattergramsfor crossvalidation resultsusing: A) inversedistance weighting; B) ordinary kriging and C)

radial basis functions with translated linear kernel.

TRANSFORMED KERNEL

DISTANCE

FIGURE 12 - Transformed kernels for radial basis

functions (squareroot isrepresented as: — 1+ |X| +1).

¢(X) = |X| +1. Now we are interested in
comparative tests between different interpolation
techniques: inverse distance weighting, ordinary
kriging and radial basisfunction with thetransl ated
linear kernel. In case of the inverse distance
weighting a power of distance equal to 2 was
considered. Table 3 presents the statistics for cross
validation tests.

Scattergrams for the cross validation results
arepresentedin Figure 11.

The best result is achieved with ordinary
kriging, followed by radid basisfunctionsand finally
by inverse distance weighting. When using radia
basis functions the metrics involved is important
and it will govern the accuracy of the estimates. So,
in order to improve the estimates using radial basis
functions some transformations on the translated
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FIGURE 13 - Scattergramsfor crossvalidation results using transformed kernels: A) squareroot; B) natural logarithm,

C) decimal logarithm.
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FIGURE 14 - Comparison of ordinary kriging against inverse distance weighting (A) and radial basis functions using

linear kernel with no transformation (B).

linear kernel were considered. Thesetransformsare
asfollows:

Squareroot:

Natural logarithm: ¢(X) = InQX| + 1)

Decimal logarithm: #(x)=log QX| + 1)

Transformed kernelsareillustrated in Figure 12.

Table 4 presents computed statistics on
scattergramsaswell asthe average condition number

for estimates using radial basis functions with
transformed kernels. As we can see, transformed

36

kernels present average condition number much
lesser than the multiquadric kernel. It means that
besides the inversion problem on matrix of the
system of equations (20), the round off errors as
seenin Figure 10A can be avoided.

Figure 13 presents scattergrams of cross
validation tests using radial basis functions with
transformed kernels.

Indeed transformed kernelsimprove estimates
as shown in scattergrams of Figure 13, because the
accuracy of the radial basis functions depends
strongly onthe metrics used. M oreover, transformed
kernelseffectively diminish the condition number of
matrix (Table4). So, aswe can seeit isnonsenseto
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FIGURE 15 - Comparison of ordinary kriging estimates against radial basisfunctions using transformationsby: square

root (A), natural logarithm (B) and decimal logarithm (C).

consider other kernelslike cubic and splines, because
they rise rapidly with|x. Therefore, all the
transformationswere done over thetranslated linear
kernel. See that the transformed kernels limit the
influence of far samples as well as the variogram
does.

Considering that ordinary kriging gives the
best results, let us compare it with inverse distance
weighting and radial basis functions with no
transformation (Figure 14).

Figure 14 shows that both methods provide
biased estimatesin relation to the ordinary kriging.
Therefore, they cannot be used for reliable ore
reserve estimation. Now let us verify if the
transformed kernels provide better results than
kernels with no transformation. Figure 15 presents
scattergrams of ordinary kriging estimates against
radial basis functions using transformed kernels.

As we can see square root is not an effective
transformation for the database of the study case,
because of themetricsinvolved (hundreds of meters).
On the other hand, natural and decimal logarithms
are the most effective giving the best results. Both
giveamost unbiased and basically the sameresults,
which proves that kernel transformation provides
good estimates comparabl e to the ordinary kriging
results. The dispersion around the bisector may be
dueto the differences between spherical covariance
(kernel for ordinary kriging) and transformed kernel
(natural or decimal logarithm). Moreover, thereisalso
the correction for geometrical anisotropy done by
ordinary kriging whileradial basisfunctionsdo not.

Radid basisfunctionswith appropriate kernels
giverdiableresultsbeing comparabletotheordinary
kriging ones. Hence, radial basisfunctionisanother

method availablefor ore reserve estimation.
5 CONCLUDING REMARKS

Radial basi sfunction estimator with aconstant
precision term hasadual form absolutely equivalent
totheordinary kriging estimator. Hence, radial basis
function arises as an aternative method to ordinary
kriging, especially in cases where experimental
variograms cannot be computed from data points.
Thismethod is much better than theinversedistance
weighting, which has been used as an dlternative to
theordinary kriging. Radial basisfunctionissuperior
to the inverse distance weighting, because it can
recognize clustered points giving adequate weights
according to their spatial configuration, such as
doneby ordinary kriging. Accurateresultsfrom radial
basi s function estimates depend strongly on metrics
involved and also on kernels. Thelinear kernel with
a logarithmic transformation gives the best result
for exploration data from the Chapada Copper
Deposit, as confirmed by average condition number
of matrices.
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