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1-D ELECTRICAL INVERSION SENSITIVITY APPLIED TO CO2 GEOLOGICAL STORAGE 
MONITORING

Amin BASSREI

ABSTRACT

Discussions on the effects of anthropogenic emissions of greenhouse gas and their 
consequences on climate change have gained public notoriety in recent decades. The 
capture of carbon dioxide (CO2) from industrial sources and its subsequent storage in 
geological reservoirs has the potential to play an important role in reducing the harmful 
effects of the atmosphere CO2 emissions in the medium and long term. Based on their 
physical properties for applying geophysical techniques, studying and evaluating the 
behavior of rocks in the presence of CO2 has shown high relevance. This study deals 
with monitoring geological reservoirs in the presence of CO2 through the electrical 
resistivity method to estimate the electrical properties of the rocks involved, such as 
CO2 saturation and electrical resistivity of the medium. Simulations were performed 
on a four-layer synthetic model. The results validated the applicability of the electrical 
method in monitoring CO2 injection and leakage.

Keywords: CO2 geological storage; Climate change; Electrical forward modeling; 
Inversion of electrical resistivity data.

RESUMO

SENSIBILIDADE DA INVERSÃO ELÉTRICA 1-D APLICADA AO MONI-
TORAMENTO DO ARMAZENAMENTO GEOLÓGICO DE CO2. As discussões so-
bre os efeitos das emissões antrópicas de gases de efeito estufa e suas consequências 
nas mudanças climáticas ganharam notoriedade pública nas últimas décadas. A captura 
de dióxido de carbono (CO2) de fontes industriais e seu posterior armazenamento em 
reservatórios geológicos tem o potencial de desempenhar um papel importante na re-
dução dos efeitos nocivos das emissões de CO2 da atmosfera a médio e longo prazo. 
Com base em suas propriedades físicas para aplicação de técnicas geofísicas, o estudo 
e a avaliação do comportamento de rochas na presença de CO2 tem se mostrado de alta 
relevância. Este estudo trata do monitoramento de reservatórios geológicos na presença 
de CO2 por meio do método da resistividade elétrica para estimar as propriedades elé-
tricas das rochas envolvidas, como saturação de CO2 e resistividade elétrica do meio. 
As simulações foram realizadas em um modelo sintético de quatro camadas. Os resul-
tados validaram a aplicabilidade do método elétrico para o monitoramento da injeção 
e vazamento de CO2.

Palavras-chave: Armazenamento geológico de CO2; Mudanças climáticas; Modela-
gem elétrica direta; Inversão de dados de resistividade elétrica.

RESUMEN

SENSIBILIDAD DE LA INVERSIÓN ELÉCTRICA 1-D APLICADA A LA 
VIGILANCIA DEL ALMACENAMIENTO GEOLÓGICO DE CO2. Las discusiones 
sobre los efectos de las emisiones antropogénicas de gases de efecto invernadero y 
sus consecuencias sobre el cambio climático han ganado notoriedad pública en las 
últimas décadas. La captura de dióxido de carbono (CO2) de fuentes industriales y su 
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posterior almacenamiento en reservorios geológicos tiene el potencial de jugar un papel 
importante en la reducción de los efectos nocivos de las emisiones de CO2 a la atmósfera 
en el mediano y largo plazo. Con base en sus propiedades físicas para la aplicación 
de técnicas geofísicas, el estudio y evaluación del comportamiento de las rocas en 
presencia de CO2 ha demostrado alta relevancia. Este estudio aborda el monitoreo de 
reservorios geológicos en presencia de CO2 a través del método de resistividad eléctrica 
para estimar las propiedades eléctricas de las rocas involucradas, como la saturación 
de CO2 y la resistividad eléctrica del medio. Se realizaron simulaciones en un modelo 
sintético de cuatro capas. Los resultados validaron la aplicabilidad del método eléctrico 
en el monitoreo de la inyección y fuga de CO2.

Palabras clave: Almacenamiento geológico de CO2; Cambio climático; Modelado 
eléctrico directo; Inversión de datos de resistividad eléctrica.

1 INTRODUCTION

Global warming is one of humanity´s 
significant challenges today. The main problem 
is the fact that CO2 absorbs thermal infrared light, 
thus being the primary agent of the greenhouse 
effect. The harmful effects have encouraged the 
industry to reduce CO2 emissions. CO2 is generated 
by concentrated industrial activities, such as 
thermal power plants, fossil fuel extraction units, 
and other industrial processes that use combustion 
in general.

Although costly, one alternatives to mitigating 
the greenhouse effect is the geological storage of 
carbon, or CCS (Carbon Capture and Storage), 
which consists of storing CO2 in appropriate 
sedimentary layers. 

The geological formations that can be used 
for CO2 storage are (i) deep saline aquifers, (ii) 
depleted or non-depleted oil and gas reservoirs, 
and (iii) coal layers. Subsurface fluids fill the pore 
spaces of the rock, as do water, oil, natural gas, and 
CO2. The purpose of CO2 geological storage is its 
injection into porous rock formations (BENSON & 
COLE 2008). Geological storage is based on the 
principle of returning CO2 underground. Therefore, 
CO2 is stored in the lithosphere and its pore spaces.

In these formations, CO2 can then be stored 
by different trapping mechanisms, depending on 
the relevant mechanism for the rock type. Among 
the three classes of geological formations, oil 
reservoirs are strong candidates for reducing 
CO2 accumulation in the atmosphere due to the 
technological knowledge acquired by the oil 
industry. These reservoirs are proven geological 
traps, capable of retaining fluids and gases for a 
long time.

The CO2 injection technique for EOR – 
Enhanced Oil Recovery has been a common 
practice in the oil industry for several decades 
and can be used in geological carbon storage. 
In reservoirs undergoing advanced recovery 
operations, storing a portion of the injected gas is 
a direct consequence of using CO2 when the gas 
produced with the oil is captured and injected into 
the reservoir.

The objectives of monitoring geological CO2 
storage are to ensure storage integrity, to meet safety 
requirements for subsurface activities during and 
after the operational phase, and assess the injection 
process as planned in the intended formation. The 
primary safety hazards are the potential for leakage 
into the atmosphere or other geological formations, 
which could result in groundwater contamination.

Exploration geophysics is an essential tool 
in a CO2 geological storage project, starting with 
the choice of target reservoirs for permanent CO2 
storage, and it is also important for monitoring 
its integrity. According to GASPERIKOVA 
& HOVERSTEN (2006), the viability of each 
geophysical technique depends on the magnitude of 
the measured contrast of the geophysical property 
produced by the increase in CO2 concentration, and 
the resolution inherent in the method. 

A secondary objective of the monitoring is 
to research and develop geological storage of CO2 
to better understand the physical and chemical 
processes in the reservoir. This process is essential 
for optimizing future storage (THOMAS & 
BENSON 2005).

Among the existing geophysical methods, 
exploration seismology is the most used, for 
target selection and monitoring. CO2 injection and 
storage have in common that the stored CO2 can 
be monitored by reflection seismology and well-
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to-well seismic tomography (LAZARATOS & 
MARION 1997). Monitoring through the inversion 
of seismic data allows us to identify the formation 
of the CO2 plume in negative contrast with the 
initial velocity field.

It is also possible to integrate exploration 
seismology with other methods. For example, 
HOVERSTEN et al. (2002) used the electromagnetic 
method and exploration seismology in the well-to-
well tomography methodology, before and during 
CO2 injection in southern California´s Lost Hills 
oil field.

However, other methods should be preferably 
used in an integrated way during monitoring, 
such as the electromagnetic, gravimetric, and 
electrical methods. According to GASPERIKOVA 
& HOVERSTEN (2006), non-seismic methods 
have begun to be used as they are less expensive 
techniques.

CO2 is resistive, so electrical methods are 
appropriate for brine-containing formations. 
For most depth ranges of interest for geological 
storage, CO2 is less dense and more compressible 
than brine and oil. Thus, seismic and gravimetric 
methods are considerable options for brine or oil 
formations (GASPERIKOVA & HOVERSTEN 
2006). 

In the last 15 years, some CO2 injection 
and monitoring projects have emerged in Brazil. 
Petrobras and IFP have initiated a joint research 
project on Carbon Capture Storage to determine 
the feasibility of CO2 injection and underground 
storage in the Buracica oil field in Recôncavo 
Basin (DINO & LE GALLO 2007).  The 
purpose of this study is to apply the performance 
assessment process, using the experimental design 
theory and the response surface methodology, to 
evaluate the suitability level of the method for 
establishing the practicability of CO2 geological 
storage (ESTUBLIERA et al. 2011). Still in Brazil, 
ROUCHON et al. (2011) suggested several surface 
surveillance guidelines inspired by data from an 
EOR-CO2 oil field case study where an extensive 
surface and reservoir gas survey has been 
performed. They also considered that the gases that 
may leak from a CO2 geological storage could have 
a wide range of compositions as well as different 
fluxes of CO2 with expected fluxes in worst-case 
leak scenarios, showing that both have comparable 
amplitudes. 

Non-seismic methods, including electrical 
methods, have also been used in Brazil. OLIVA et 
al. (2018) presented results from a field experiment 

in Santa Catarina using a 3-D electrical imaging 
technique to monitor CO2 migration in saturated 
and unsaturated clay-rich sediments. Comparison 
of post-injection electrical imaging results with 
pre-injection images shows changes in resistivity 
values consistent with released CO2 migration 
pathways. 

In this study, we use a non-seismic 
method called electrical resistivity prospection 
for monitoring CO2 geological reservoirs. We 
consider a model of four parallel plane layers. The 
observed data are the apparent resistivity values as 
a function of different offsets between the current 
electrodes. Those values are the input for the 
inversion procedure. The inversion output is the 
values of layer resistivity and thickness. The data 
were corrupted with random noise to validate the 
methodology so that the RMS deviation between 
the apparent resistivity and the apparent resistivity 
with noise was around 5%. The simulation results 
validated the 1-D approach of the resistivity 
method, which showed sufficient sensitivity to 
evaluate the electrical properties of rocks involved 
in geological CO2 storage.

2 ELECTRICAL PROPERTIES AND CO2 
MONITORING

The electrical resistivity of reservoir rocks is 
highly sensitive to variations in water saturation, 
according to Archie's equation (ARCHIE 1942)

 ,                    (1)

where rrock is the density of the rock as a function 
of gas saturation Sgas. On the other hand,   Sgas = 
1 – Swater in which Swater is the water saturation. rbrine 

is the resistivity of the fluid in the pores (in this 
case, brine). All petroleum fluids (oil, condensate, 
and gas) and CO2 are electrically resistive, so 
Archie's equation is appropriate (GASPERIKOVA 
& HOVERSTEN 2006).

Archie's equation accurately describes the 
electrical resistivity of sedimentary rocks as a 
function of the listed parameters. It works well 
on clean and homogeneous sandstone. A critical 
factor in resistivity measurements is the clay 
content, which produces a low apparent resistivity 
compared to actual resistivity because clay 
minerals tend to improve the path for electrical 
currents. The resistivity values increase during the 
gas injection period, but when calculated by the 
Archie equation, they present a saturation of around 
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10%. This number is less than that estimated from 
neutron log data. Such low saturation is assumed 
to be the effect of clay inclusion in the reservoir 
(NAKATSUKA et al. 2010).

As CO2 displaces water, the coupling 
coefficient decreases. On average, the observed 
coupling coefficients for constant gas flow are 
about ten times smaller than for water flow in the 
same sample. Since the coupling coefficient of 
liquid CO2 is lower than that of water, the most 
effective way to monitor the spatial variation in 
the injected CO2 flow is to monitor the forward 
front of the CO2/H2O ratio, where the coupling 
coefficient is more significant (HOVERSTEN & 
GASPERIKOVA 2005).

When the injected CO2 reaches measurement 
zones, the resistivity increases considerably. The 
onset of increased resistivity indicates that CO2 is 
migrating from the bottom to the upper end of the 
sandstone. The CO2 migration pattern varies due 
to the permeability and mineral composition of 
the rocks. In the case of clean and homogeneous 
sandstone, the fluid migrates as a uniform front in a 
relatively short period due to the high permeability. 
In contrast, heterogeneity and clay content decrease 
the displacement rate and complicate the process.

Gas saturation can be estimated from the 
initial resistivity of the rock fully saturated with 
brine (before the injection) and the resistivity of the 
partially saturated rock brine (during the injection) 
with the following equation:

 ,                    (2)

where RI is called resistivity index and n is a 
numerical factor called saturation exponent. This 
empirical relationship was obtained through 
laboratory experiments on sandstone samples from 
different reservoirs (NAKATSUKA et al. 2010).  
RI is defined as the ratio between the resistivity at 
a given instant of time and the initial resistivity, i.e.   
RI = r / r0, hence equation (2) can be written as:

 .                     (3)

Figure 1 shows the relationship between CO2 
saturation and the resistivity index RI, using the 
parameter n = 1.62, as suggested by SCHMIDT-
HATTENBERGER et al. (2014).

The curve in figure 1 is generic for any 
value of r0. If we consider r0 = 100 W.m, which 
corresponds to the resistivity of the rock 100% 

saturated with brine, we can present a curve of 
absolute resistivity values, as shown in figure 2.

On one hand, if RI = 1.0, it follows that   
r   = r0 and the saturation is zero (SCO2

 = 0), 
corresponding to the curve´s origin. On the other 
hand, a 95% saturation corresponds to RI = 128.14, 
i.e. r0 = 12,814 W.m. Moreover, figure 2, which is 
specific for r0 = 100 W.m, indicates the dynamics 
of the CO2 injection process through arrows.

FIGURE 2 – Absolute resistivity values as a function 
of CO2 saturation, for r0 = 100 W.m,  which 
corresponds to the rock resistivity 100% saturated 
with brine. The arrows indicate the dynamics of 
the CO2 injection process, with the final value r0 = 
12,814 W.m  corresponding to a 95% CO2 saturation.

3 FORWARD MODELING AND INVERSION 
OF 1-D ELECTRICAL RESISTIVITY DATA

Electrical resistivity sounding is a subsurface 
mapping technique that analyzes electrical 
properties in a horizontal layered model. It allows 
the location of bodies that generate anomalous 
responses in the measurement equipment. The 
method has been applied in mineral exploration, 

FIGURE 1 – CO2 saturation curve as a function of the 
resistivity index, with the index n equal to 1.62.
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underground water exploration, geotechnical 
engineering, environmental geophysics, and 
archeology. The maximum depth limit is about 1 
km (KEAREY et al. 2002).

The electrical resistivity method requires 
electrodes in direct contact with the Earth's surface. 
An electric current produced by the equipment is 
injected into the soil through an electrode A with 
a return through another electrode B. The potential 
difference from this current is measured at two 
other electrodes, M and N. The inverse procedure 
estimates the anomaly source, which uses apparent 
resistivity values as input data. The apparent 
resistivity, in turn, is calculated as a function of the 
spacing or offset between electrodes and uses the 
measured values of electric current and potential 
difference.

The potential measured at the electrode  M (VM) 
will present contributions due to the potentials 
generated by A and B (VA and VB). The same is valid 
for the electrode N. In this sense, the difference  DV 
= VM - VN is expressed by:

 ,   (4)

where AM, AN, BM and BN are the spacing or offset 
between the electrodes. By isolating the resistivity, 
we obtain the following:

. (5)

The parameter K is called the geometric 
array factor.

If we consider a single surface current 
electrode in a uniform medium, the current will 
flow radially, with a uniform current distribution 
over hemispherical shells in the half-space. These 
shells are the equipotential surfaces. Expression 
(5) measures and computes the electrical resistivity 
of a homogeneous half-space using a generic four-
electrode arrangement. The resistivity value will 
be constant regardless of the spacing between the 
electrodes.

To conduct a Schlumberger survey, one has 
that que MN = 2l and AB = 2L, so that, after some 
approximations, the geometric factor is given as 
K = pL2/2l, which implies

 .
                           

(6)

Equation (6) is specific to a homogeneous 
medium. If the subsurface is non-homogeneous, 
the resistivity will be a position of space, meaning 
that the value obtained from equation (6) will 
have a contribution from all subsurface resistivity 
values. Therefore, the apparent resistivity function 
is not constant, and the field-measured values of  
DV and I, for different spacing l and L, will provide 
a set of apparent resistivity values denoted by .

For the forward modeling step, consider a 
model with  NL flat horizontal layers, thicknesses  
hi and layer resistivities r i with i = l, ..., LN.  A 
current is injected into the surface layer. For a 
Schlumberger survey, the apparent resistivity is 
expressed by (KELLER & FRISCHKNECHT 
1966, INMAN 1975):

 ,     i = l, ..., LN,      (7)

where the auxiliary function  is expressed as:

,       i = l, ..., LN,       (8)

with

 ,                      i = l, ..., LN.     (9)

The process continues until the final layer, 
which is the homogeneous half-space. The results 
are:

 ,       (10)

with

 .               (11)

The above equations can be synthesized into 
the compact expression d = g(m), where the vector 
d contains the apparent resistivities ra. In the inverse 
procedure both the layer resistivities and thicknesses 
are unknown. Thus, the layer resistivities r i and layer 
thicknesses hi form the vector m, to be estimated. The 
inverse problem is non-linear, so an approximation 
is required to linearize the problem, usually the 
Taylor’s expansion. The vector d is expanded around 
a neighborhood of m, denoted by m0:

...  
  
(12)
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where d0 = g(m0).Truncating the Taylor’s series at 
the first order, we have

  Dd = GDm,                          (13)

where Dd = d - d0, Dm = m - m0 and the elements 
of the matrix G are calculated numerically by the 
expression:

.                   (14)

Equation (13) can be generalized as:

Ddk = GkDmk,                         (15)

where Ddk = dobs - dk and Dmk = mk+1  - mk. 
Moreover, the elements of matrix Gk in equation 
(15) are calculated numerically for each iteration 
by the expression:

.                  (16)

The matrix in equation (15) is then inverted, 
for example, by the generalized inverse,

Dmk = (Gk)+Ddk,                        (17)

and the solution is updated iteratively by the 
expression

mk+1 = Dmk + mk .                      (18)

As a rule, Gk is not a square matrix. 
Furthermore, there are usually more equations 
(or data) than unknowns (or parameters), i.e., the 
inverse problem is said to be overdetermined. 
Therefore, the solution expressed by equation (17) 
can be extended by using the least squares method:

mk+1 = (GT,k Gk)+ GT,k Ddk + mk .          (19)

Sometimes, the square matrix GT,k Gk may 
not be a complete rank, so damping is necessary. 
This variant of least squares is called damped least 
squares:

mk+1 = (GT,k Gk  + e 2I)+ GT,k Ddk + mk .         (20)

The literature suggests techniques for 
choosing the non-negative damping factor e 2. 
However, in this study, the choice of e 2 was made 
by trial and error.

4 SIMULATIONS AND RESULTS

Several simulations were performed on 
subsurface layered models using a 1-D approach. 
The results provide interpretations in a single 
dimension, in this case, along the depth axis.

We employed the linearized inversion 
method described by INMAN et al. (1973) to 
estimate the model parameters (layer resistivities 
and layer thicknesses). In the present study, we 
applied the damped least squares method for the 
inversion, as proposed by INMAN (1975). This 
method mitigates the ill-conditioned problem by 
damping the main diagonal of the matrix to be 
inverted, which is also sometimes called zeroth-
order regularization. For the numerical procedure 
of the inversion, we used the decomposition by 
singular values.

The inversion process is ambiguous as it 
can provide solutions where the conductance (the 
product between the thickness and the conductivity 
of a given layer) is constant. In contrast, the 
individual thickness and/or conductivity values 
may vary.

The Schlumberger arrangement was chosen 
for this study due to its widespread use. We 
considered a four-layer model, with layers labeled 
A, B, C, and D, from the uppermost to the lowest 
layer, with thicknesses equal to 50 m. The layer 
resistivities, from top to bottom, are 50, 100, 50, 
and 200 W.m.

Layer B, with r0 = 100 W.m, initially 
saturated with 100% brine, characterizes the pre-
injection condition. The solid curve of figure 3 
illustrates the apparent resistivity of this model. 
The gradual injection of CO2 in layer B will imply 
a change in the apparent resistivity curve. Figure 
3 depicts two additional curves representing the 
intermediate condition (with 50% CO2 injection 
and 50% brine) and the post-injection condition 
(95% CO2 injection and 5% brine).

The inversion was performed using the 
previously described algorithm. The observed 
data vector consisted of 15 values of apparent 
resistivity. The model parameters vector has 
seven components: 4-layer resistivity and 3-layer 
thickness values. Note that the fourth and last 
layer has a semi-infinite thickness. Therefore, 
the inverse problem is overdetermined. The 
vector of true model parameters is expressed as 
follows:

mtrue = (r1, r2 ,r3, r4,Dz1, Dz2, Dz3).        (21)
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FIGURE 3 – Apparent resistivity as a function of 
distance due to CO2 injection in layer B, with  r0 = 
100 W.m. The solid curve describes the pre-injection 
condition, with 100% brine. The dashed curve 
represents the intermediate condition, with 50% CO2 
injection and 50% brine. The dotted curve depicts the 
post-injection condition, with 95% CO2 injection and 
5% brine.

In the first series of simulations, we utilized 
noise-free data. We required an a priori estimate 
of the model parameters to perform the inversion. 
For this case, a priori model consisted of resistivity 
values equivalent to 80% of the true model and 
thickness values equal to the true values. Table 1 
presents the true and a priori layer resistivity values 
for this and subsequent stages.

TABLE 1 – True and a priori values of layer resistivity 
(in W.m.) for CO2 injection (upper panel) and leakage 
(lower panel) processes.

model in black. The recovered model is virtually 
equal to the true model in terms of resistivity and 
thickness values.

FIGURE 4 – Inversion of noise-free apparent 
resistivity data in the pre-injection condition of CO2, 
with layer B saturated with 100% brine. The red profile 
represents the true model, the blue demonstrates the 
a priori model, and the black indicates the estimated 
model.

Evaluating the proximity between the prior 
and true models in each simulation is essential. 
For this purpose, we employed the RMS estimator 
of deviation between the true values of the model 
parameter mtrue and the corresponding a priori 
values mprior:

 ,        (22)

in which we obtained  = 3.52% in the pre-
injection condition.

Similarly, for calculating the RMS deviation 
between the true model parameters mtrue and the 
estimated model parameters mest, we used the 
following estimator:

  ,     (23)

in which we obtained the value  = 0.06%  for 
the pre-injection condition. Table 2 contains the 
simulation results for the various injection stages.

CO2 injection in layer B

La
ye

r 0% CO2 50% CO2 95% CO2

r true rprior r true rprior r true rprior

A 50 40 50 40 50 40
B 100 80 307 246 12814 10251
C 50 40 50 40 50 40
D 200 160 200 160 200 160

CO2 leakage in layer C

La
ye

r 95% CO2 50% CO2 0% CO2

r true rprior r true rprior r true rprior

A 50 40 50 40 50 40
B 100 80 100 80 100 80
C 6407 5125 154 123 50 40
D 200 160 200 160 200 160

Figure 4 displays three profiles corresponding 
to the pre-injection condition: the true model in 
red, the a priori model in blue, and the estimated 
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By maintaining the same proportion between 
resistivities to define the a priori information, the 
inversion proved satisfactory in the intermediate 
condition, with 50% CO2 injection and 50% brine 
in layer B. Figure 5 depicts the three curves. For 
this condition, the estimators provided = 
3.80% and = 0.37%.

FIGURE 5 – Inversion of noise-free apparent 
resistivity data in the intermediate condition, with 
50% CO2 injection and 50% brine in layer B. The 
red profile represents the true model, whereas the 
blue demonstrates the a priori model, and the black 
indicates the estimated.

Finally, figure 6 displays the result of 
inverting the apparent resistivity data post-
injection, with 95% CO2 injection and 5% brine in 
layer B. Once again, we can see that the estimated 
model closely matches the real model. In this final 
condition, the estimators provided  = 4.00% 
and = 0.89%.

FIGURE 6 – Inversion of noise-free apparent 
resistivity data post-injection, with 95% CO2 injection 
and 5% brine in layer B. The red profile represents the 
true model, the blue demonstrates the a priori model, 
and the black indicates the estimated model.

Figures 4, 5, and 6 can be integrated, as 
shown in figure 7, which illustrates the three 
stages of the process simultaneously: pre-injection, 
intermediate, and final. Figure 7(a) provides the 
true models, and figure 7(b) presents the estimated 
models. There, we can observe that layer A is 
accurately recovered in terms of resistivity and 
thickness, and layer B is recovered in terms of 
resistivity. However, a slight error is present in 
the thickness of layer B, which propagates into the 
recovery of model parameters of layers C and D.

For methodology validation purposes, we 
introduced random noise to the apparent resistivity  
ra

 in the following formula:

,      i = 1, ..., M ,              (24)

Stage A priori (%) Noise-free data (%) Noisy data (%)
C

O
2 i

nj
ec

tio
n

in
 la

ye
r B

0% saturation (pre-injection) 3.52 0.06 0.90

50% saturation 3.80 0.37 0.19

95% saturation 4.00 0.89 0.80

Stage A priori (%) Noise-free data (%) Noisy data (%)

C
O

2 l
ea

ka
ge

in
 la

ye
r C

95% saturation (pre-leakage) 4.00 0.69 0.81

50% saturation 3.66 0.21 0.14

0% saturation 3.52 0.06 0.90

TABLE 2 – Simulation results of the processes of CO2 injection (upper panel) and leakage (lower panel). 
Deviation of prior information is calculated using equation (22), while the estimated model error is calculated 
using equation (23).
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in which ra,* is the apparent resistivity contaminated 
with noise; a is the noise factor and  ri represents 
the random sequence. The value of a was chosen 
to ensure that the RMS deviation  between ra,* 
and ra is approximately 5%. This RMS estimator is 
expressed as follows:

 .       (25)

Figure 8 illustrates the apparent resistivity 
curves of ra and . The electrode spacing was 
limited to 100 m to enhance the visibility of noise-
induced fluctuations.

Noisy resistivity values  were used as 
input data for the inversion procedure. Figure 9 
demonstrates the result in the CO2 pre-injection 
condition, with layer B saturated with 100% brine. 
The RMS deviation between the true model and 
the a priori model remains unchanged compared 

to the noise-free case, i.e., = 3.52%. However, 
as expected, the RMS deviation between the true 
model and the estimated model increased from 

= 0.06% to = 0.90% due to the presence of 
noise.

FIGURE 8 – Curves of apparent resistivity ra and 
noise-contaminated apparent resistivity ra,*. The RMS 
deviation between the two curves is = 5%. The 
noise-caused fluctuation becomes more noticeable 
with the electrode spacing limited up to 100 m.

FIGURE 9 – Inversion of apparent resistivity noisy 
data in the pre-injection condition, with layer B 
saturated with 100% brine. The red curve represents 
the true model, the blue curve illustrates the a priori 
model, and the black curve indicates the estimated 
model.

Figure 10 displays the inversion result with 
noisy data for the intermediate condition, with 50% 
CO2 injection and 50% brine. Once again, the RMS 
deviation between the true model and the a priori 
remains the same as in the noise-free case ( = 
3.80%). Interestingly, the RMS deviation between 
the true and estimated model decreased from = 
0.37%  to = 0.19%.

FIGURE 7 – Different stages of CO2 injection with 
noise-free data: pre-injection (black), intermediate 
(blue), and final (red). Figure 7(a) displays true 
models and figure 7(b) presents estimated models.

a)

b)
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FIGURE 10 – Inversion of apparent resistivity noisy 
data in the intermediate condition, with 50% CO2 
injection and 50% brine in layer B. The red curve 
represents the true model, the blue curve illustrates 
the a priori model, and the black curve indicates the 
estimated model.

Figure 11 exhibits the simulation for the 
final stage (post-injection condition), with 95% 
CO2 injection and 5% brine in the same layer. In 
this final condition, the estimators provided = 
4.00% and = 0.89%. 

FIGURE 11 – Inversion of apparent resistivity noisy 
data post-injection, with 95% CO2 injection and 5% 
brine in layer B. The red curve represents the true 
model, the blue curve illustrates the a priori model, 
and the black curve indicates the estimated model.

Despite the presence of noise, the results 
were quite satisfactory. As figure 12 indicates, we 
integrated the different CO2 injection stages in the 
case of the noise-free simulations.

The second set of simulations describes the 
CO2 leaking condition, in which the brine replaces 
the CO2. Using the same four-layer model, we now 

consider that the leakage occurs in layer C instead of 
layer B. We examined CO2 saturation of 95%, 50% 
and 0%, with the complementary values summating 
up to 100% representing the brine saturation.

We consider the reference value of r0 = 
6406.76 W.m as the resistivity of layer C saturated 
with 95% CO2. Figure 13 presents the absolute 
resistivity values, in which the arrows indicate the 
CO2 leakage dynamics. In the final leakage step, 
with 0% CO2 saturation, we have r0 = 50 W.m.

FIGURE 13 – Absolute resistivity values as a function 
of CO2 saturation, in which r0 = 6406.76 W.m 
corresponds to the resistivity of rock saturated with 
95% CO2. The arrows indicate the dynamics of the CO2 
leakage process, with the final value r0 = 50 W.m.

Figure 14 depicts the apparent resistivity 
curves. The solid curve represents the pre-leakage 
condition. The dashed curve illustrates the apparent 
resistivity in the intermediate condition, with 50% 
CO2 injection and 50% brine. The dotted curve 
corresponds to the final condition of total CO2 
leakage, with 100% brine.

FIGURE 12 – Estimated models at different stages 
of CO2 injection: pre-injection (black curve), 
intermediate (blue curve), and final (red curve).
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FIGURE 14 – Change in apparent resistivity due 
to CO2 leakage in layer C, with r0 = 6406.76 W.m. 
The solid curve depicts the pre-leakage condition, 
with the layer saturated with 95% CO2. The dashed 
curve describes the intermediate condition, with 
50% CO2 injection and 50% brine. The dotted 
curve describes the post-leakage condition, with 
100% brine.

Figure 15 presents the inversion result of 
the apparent resistivity data in the pre-leakage 
condition. We applied the same criterion of a 
priori information in the injection process, with 
resistivity values equivalent to 80% of the true 
layer resistivity. In contrast, a priori thickness 
values are equal to true values.

The result of inverting the final stage of 
leakage is not displayed since it is equivalent to the 
result of figure 9, which is the initial stage of the 
injection process.

Figure 17(a) presents the integration of the 
different stages of CO2 leakage for the true models, 
while figure 17(b) depicts the integration for the 
estimated models.

We also incorporated random noise in 
the leakage process. Figure 18 illustrates the 
inversion of the apparent resistivity data in 
the pre-leakage condition, using the same a 
priori information criterion as in the noise-free 
simulation. Despite the presence of noise, the 
estimated model remains very close to the true 
model. In quantitative terms, the RMS deviation 
between the true model and the estimated model, 
which was = 0.69% for the noise-free case, 
increased to = 0.81%.

Figure 19 presents the result of inverting the 
intermediate stage of leakage with the presence 
of noise. Interestingly, as observed in the CO2 
injection process, the RMS deviation between the 
true and estimated models decreased from = 
0.21% in the noise-free data case to = 0.14% 
in the noisy data case.

Inverting the final stage of the leakage 
process would yield the same result as the initial 
stage of the injection process (Figure 15). Finally, 
figure 20 demonstrates the integration of the 
different stages of CO2 leakage with the presence 
of noise. 

FIGURE 15 – Inversion of apparent resistivity noise-
free data in the pre-leakage condition, with 95% CO2 
injection and 5% brine in layer C. The red curve 
represents the true model, the blue curve illustrates 
the a priori model, and the black curve indicates the 
estimated model.

Figure 16 depicts the inversion of apparent 
resistivity data in the leakage condition, with 50% 
CO2 injection and 50% brine in layer C. The red 
curve represents the true model, the blue curve 
illustrates the a priori model, and the black curve 
indicates the estimated model.

FIGURE 16 – Inversion of apparent resistivity noise-
free data in the leakage condition, with 50% CO2 
injection and 50% brine in layer C. The red curve 
represents the true model, the blue curve illustrates 
the a priori model, and the black curve indicates the 
estimated model.
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FIGURE 17 – Different stages of CO2 leakage without 
adding noise: pre-leakage (black curve), intermediate 
(blue curve), and final (red curve). Figure 17(a) 
depicts the true models, while figure 17(b) displays 
the estimated models.

FIGURE 18 – Inversion of apparent resistivity noisy 
data in the pre-leakage condition, with 95% CO2 
injection and 5% brine in layer C. The red curve 
represents the true model, the blue curve illustrates 
the a priori model, and the black curve indicates the 
estimated model.

FIGURE 19 – Inversion of apparent resistivity data 
without adding noise in the post-injection condition, 
with 50% CO2 injection and 50% brine in layer C. 
The red curve represents the true model, the blue 
curve illustrates the a priori model, and the black 
curve indicates the estimated.

FIGURE 20 – Estimated models of the different stages 
of CO2 leakage with noise: pre-leakage (red curve), 
intermediate (blue curve) and final (black curve).

5 CONCLUSIONS

In this study, we verified the applicability of 
1-D electrical modeling and inversion to monitor 
CO2 storage. By measuring resistivity differences 
before, during, and after gas injection, it is possible 
to monitor the gas dynamics in the subsurface. The 
simulation results in a four-layer model, including 
the presence of noise, aligned with our expectations, 
as evidenced by the overlapping curves of the 
injection or leakage in the different stages. With 
the presence of CO2, the resistivity curve becomes 
more accentuated due to its higher resistance than 
other pore-filling fluids, such as water. Despite 
the limitation of the 1-D approach and the fact 
that we do not consider any CO2 dynamic process, 

a)

b)
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except the resistivity variation with CO2 saturation, 
the proposed methodology has been validated. It 
proves its applicability to CO2 geological storage, 
which offers a viable alternative to mitigate the 
environmental impacts of CO2 emissions.
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