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ABSTRACT

Accurate and detailed datasets are crucial for assessing climate change impacts. 
Regional climate models provide high-resolution simulations and are key tools but often 
exhibit systematic biases. Therefore, this paper presents a dataset derived from bias-
corrected Eta regional model simulations and projections driven by four global CMIP5 
models. The correction applied to daily precipitation, potential evapotranspiration, 
actual evapotranspiration, and 2-m air temperature, was conducted on a 0.2° x 0.2° grid 
over South America. The dataset covers two periods: 1976-2005 (baseline) and 2006-
2099 (future) under RCP4.5 and RCP8.5 scenarios. Empirical quantile mapping was 
used to adjust the Eta model outputs to better match observational data. This method 
modified the accumulated probability curves of the Eta model outputs to align with 
observational curves for both baseline and future climates. Two observational datasets 
were used for correction and evaluation. The new dataset shows that bias correction 
significantly reduced the errors in the Eta simulations, especially for the frequent 
values of precipitation, potential evapotranspiration, and 2-m temperature, and also 
corrected the annual cycle and frequency distribution of these variables, approaching 
the observations. The pattern of extreme precipitation indices from the bias-corrected 
Eta dataset also reduced error. Bias correction was applied to future projections. 
The comparison against the raw Eta dataset showed that the trends of changes were 
preserved, but in general, the peaks of the changes were smoothed. As in the raw Eta 
dataset, the RCP8.5 scenario showed a higher change rate than RCP4.5. This work also 
revealed the large uncertainty of the observational dataset; some of the remaining errors 
after the bias correction were mostly due to differences between the two correction and 
evaluation observational datasets. The described dataset is freely available from the 
CNPq LattesData repository at the following link: https://doi.org/10.57810/lattesdata/
WAVGSL.

Keywords: Regional climate model; Eta model; Empirical quantile mapping; 
Cumulative distribution frequency.

RESUMO

UM CONJUNTO DE DADOS DE PROJEÇÕES DE MUDANÇAS CLIMÁTI-
CAS DE ALTA RESOLUÇÃO PARA A AMÉRICA DO SUL COM CORREÇÃO DE 
VIÉS. Conjuntos de dados precisos e detalhados são cruciais para avaliar os impactos 
das mudanças climáticas. Modelos climáticos regionais fornecem simulações de alta 
resolução e são ferramentas essenciais, mas frequentemente exibem vieses sistemáti-
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cos. Assim, este artigo apresenta um conjunto de dados derivado de simulações e pro-
jeções do modelo regional Eta com viés corrigido, aninhado a quatro modelos globais 
do CMIP5. A correção foi aplicada à precipitação diária, evapotranspiração potencial, 
evapotranspiração real e temperatura do ar de 2 m em ponto de grade regular de 0,2° 
x 0,2° sobre a América do Sul. O conjunto de dados abrange dois períodos: 1976-
2005 (período de referência) e 2006-2099 (período do clima futuro) sob os cenários 
RCP4.5 e RCP8.5. O método utilizado para redução de viés consiste no mapeamento 
quantil empírico, que compara as curvas de probabilidade acumulada entre as variáveis 
observadas e as simuladas pelo modelo climático, tanto para o clima presente quanto 
para as projeções do clima futuro. O método pressupõe que os erros sistemáticos são 
reduzidos pelo deslocamento das curvas de distribuição das simulações para o mesmo 
nível de frequência das observações. Foram empregados dois conjuntos de dados ob-
servacionais distintos: um para a etapa de correção e outro para a etapa de avaliação. O 
conjunto de dados corrigido revela uma redução substancial dos erros nas simulações 
do modelo Eta, particularmente para os valores mais frequentes de precipitação, eva-
potranspiração potencial e temperatura a 2 m. A correção melhorou a representação do 
ciclo anual e a distribuição de frequência dessas variáveis, aproximando-os das obser-
vações. A correção de viés contribuiu também para redução dos erros na representação 
dos índices de extremos de precipitação. A correção de viés foi aplicada às projeções 
futuras. A comparação com o conjunto de dados Eta bruto (sem correção) mostrou que 
as tendências das mudanças foram preservadas, mas, em geral, os picos das mudanças 
foram suavizados. Assim como no conjunto de dados Eta bruto, o cenário RCP8.5 mos-
trou uma taxa de mudança maior do que o RCP4.5. Este trabalho também revelou uma 
grande incerteza do conjunto de dados observacionais; alguns dos erros restantes após 
a correção de viés foram principalmente devido a diferenças entre os dois conjuntos 
de dados observacionais de correção e avaliação. O conjunto de dados descrito está 
disponível gratuitamente no repositório LattesData do CNPq no seguinte link: https://
doi.org/10.57810/lattesdata/WAVGSL.

Palavras-chave: Modelo climático regional; Modelo Eta; Mapeamento quantil empíri-
co; Distribuição de frequência acumulada.

RESUMEN 

UN CONJUNTO DE DATOS DE PROYECCIONES DE CAMBIOS 
CLIMÁTICOS DE ALTA RESOLUCIÓN PARA AMÉRICA DEL SUR CON 
CORRECCIÓN DE SESGO. Los conjuntos de datos precisos y detallados son cruciales 
para evaluar los impactos del cambio climático. Los modelos climáticos regionales 
proporcionan simulaciones de alta resolución y son herramientas esenciales, pero a 
menudo presentan sesgos sistemáticos. En este contexto, el artículo presenta un conjunto 
de datos derivado de simulaciones y proyecciones del modelo regional Eta con sesgo 
corregido, acoplado a cuatro modelos globales del CMIP5. La corrección se aplicó a 
la precipitación diaria, la evapotranspiración potencial, la evapotranspiración real y la 
temperatura del aire a 2 m en una rejilla regular de 0,2° x 0,2° sobre América del Sur. El 
conjunto de datos cubre dos períodos: 1976-2005 (período de referencia) y 2006-2099 
(período del clima futuro) bajo los escenarios RCP4.5 y RCP8.5. El método utilizado 
para la reducción de sesgo consiste en el mapeo cuantílico empírico, que compara las 
curvas de probabilidad acumulada entre las variables observadas y las simuladas por 
el modelo climático, tanto para el clima presente como para las proyecciones del clima 
futuro. El método asume que los errores sistemáticos se reducen al ajustar las curvas de 
distribución de las simulaciones para coincidir con el mismo nivel de frecuencia de las 
observaciones. Se emplearon dos conjuntos de datos observacionales distintos: uno para 
la etapa de corrección y otro para la etapa de evaluación. El conjunto de datos corregido 
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revela una reducción sustancial de los errores en las simulaciones del modelo Eta, 
particularmente para los valores más frecuentes de precipitación, evapotranspiración 
potencial y temperatura a 2 m. La corrección mejoró la representación del ciclo anual 
y la distribución de frecuencia de estas variables, acercándolas a las observaciones. La 
corrección de sesgo también contribuyó a la reducción de errores en la representación 
de los índices de extremos de precipitación. La corrección de sesgo se aplicó a las 
proyecciones futuras. La comparación con el conjunto de datos bruto de Eta (sin 
corrección) mostró que las tendencias de cambio se preservaron, pero en general, los 
picos de cambio se suavizaron. Al igual que en el conjunto de datos bruto de Eta, 
el escenario RCP8.5 mostró una tasa de cambio mayor que el RCP4.5. Este trabajo 
también reveló una gran incertidumbre en el conjunto de datos observacionales; algunos 
de los errores restantes después de la corrección de sesgo se debieron principalmente 
a diferencias entre los dos conjuntos de datos observacionales utilizados para la 
corrección y la evaluación. El conjunto de datos descrito está disponible gratuitamente 
en el repositorio LattesData del CNPq en el siguiente enlace: https://doi.org/10.57810/
lattesdata/WAVGSL.

Palabras clave: Modelo climático regional; Modelo Eta; Mapeo empírico de cuantiles; 
Distribución de frecuencia acumulada.

1 INTRODUCTION

Identifying the impacts of climate change has 
required the development of a series of datasets. 
Global climate models are widely used in studies 
of the impacts of climate change (IPCC 2007, 
2013, 2021). Although global models currently 
present more refined spatial resolutions and higher 
quality simulations (FLATO et al. 2013, GUO et al. 
2020), they still have a coarse spatial resolution in 
relation to regional models, limiting the adequate 
representation of the surface and mesoscale 
processes (NAVARRO-RACINES et al. 2020). 
Applying generated by global climate models at 
local and regional scales often requires dynamical 
downscaling using regional climate models. This 
approach is essential for studies in agriculture and 
water resource management (WILBY et al. 2009, 
ADAM et al. 2011). LYRA et al. (2018) showed 
that climate simulations for Southeast Brazil, using 
the Eta regional model with high spatial resolution, 
improved the representation of the frequency and 
intensity of extreme precipitation and temperature 
events. 

Although dynamical downscaling of 
simulations provides more detailed representations 
of climate patterns, systematic errors inherent in 
global and regional models persist and may be 
amplified in regional modeling (WU & LYNCH 
2000, SATO et al. 2007, XU & YANG 2012, 
XU et al. 2021). These discrepancies, especially 
in representing precipitation and extreme events 
(IPCC 2021), are due to model simplifications and 

parameterizations (MCGRATTAN & TOMAN 
2011, LAFFERTY & SRIVER 2023). Driving 
hydrological or agricultural impact models 
from those climate model outputs may cause 
error propagation through modeling cascades. 
Several bias correction methodologies have been 
developed and applied to global and regional 
climate model outputs to reduce these error 
propagations (THEMEßL et al. 2011, BÁRDOSSY 
& PEGRAM 2013, KRINNER et al. 2020, GUO 
et al. 2020, XU et al. 2021, QIAN & CHANG 
2021, JOSE & DWARAKISH 2022, TRAN-ANH 
et al. 2023). These techniques, which are generally 
based on comparisons with observations and use 
statistical methods (MARAUN 2016), aim to 
reduce systematic errors and calibrate climate 
simulations, making them more consistent with 
observed conditions. Consequently, the bias-
corrected climate model outputs become more 
suitable for impact studies and for developing 
adaptation measures in various sectors, such as 
agriculture, energy, and health.

Bias correction methodologies differ 
according to statistical complexity, ranging 
from simpler scaling methods, such as linear 
scaling (LENDERINK et al. 2007), variance 
scaling (TERINK et al. 2010, TEUTSCHBEIN 
& SEIBERT 2012) or Local Intensity Scaling 
(SCHMIDLI et al. 2006), to more sophisticated 
methods of mapping probability distributions 
(normal distribution mapping (PIANI et al. 2010, 
GUDMUNDSSON et al. 2012, QIAN & CHANG 
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2021), empirical quantile mapping (BÁRDOSSY 
& PEGRAM 2011, THEMEßL et al. 2011, QIAN 
& CHANG 2021), quantile mapping with linear 
transformation function (PIANI et al. 2010, QIAN 
& CHANG 2021), and delta quantile mapping 
(CANNON et al. 2015, QIAN & CHANG 2021).

Empirical quantile mapping (EQM) is a non-
parametric bias correction method (THEMEßL et 
al. 2011, FANG et al. 2015, VELASQUEZ et al. 
2020), which consists of adjusting the variance 
of the model distribution to better match the 
variance of the observation distribution by using a 
transfer function of distribution based on empirical 
quantiles that are linearly interpolated (THEMEßL 
et al. 2012, FANG et al. 2015, MARAUN 2016). 
This technique has been applied to historical 
and future climate series for different emission 
scenarios produced by several global and regional 
models, mainly for precipitation, as it generally 
produces satisfactory results compared to other 
methods such as linear scaling and local intensity 
scaling (e.g., THEMEßL et al. 2011, 2012; 
VELASQUEZ et al. 2020; MENDEZ et al. 2020). 
Furthermore, THEMEßL et al. (2011) found that 
the EQM performed best at high quantiles, which 
makes it suitable for extreme events.

BALLARIN et al. (2023) used the delta 
quantile mapping to correct biases in time 
series of precipitation, maximum and minimum 
temperatures, net solar radiation, wind speed, and 
relative humidity output by the set of 19 CMIP6 
(Coupled Model Intercomparison Project 6) global 
models over entire Brazil for the historical (1980-
2013) and future (2015-2100) periods and under 
two emission scenarios (SSP2-4.5 and SSP5-8.5). 
The results showed an adequate performance in 
removing bias in the historical series, while the 
future series had the simulated trends preserved. 
DE OLIVEIRA et al. (2015) evaluated the 
effectiveness of several bias correction methods 
in simulations of the regional Eta model, nested 
in different members of the global HadCM3 
model, for Southern Brazil from 1976 to 1990. 
The methods compared included the delta change 
approach, the direct method, and quantile mapping, 
applied to climate variables such as precipitation. 
The results showed that, although there were 
significant differences between the methods –
especially for precipitation, with discrepancies of 
up to 20% – none of them stood out as superior 
in all the analyzed criteria. BILLERBECK et al. 
(2021) also tested different methodologies of bias 
correction for precipitation simulated by the Eta 

model nested into four global models (CHOU et 
al. 2014a) over the Piracicaba basin in Southeast 
Brazil from 1961 to 2005. All methods were 
efficient in bias removal compared to uncorrected 
outputs; however, less complex methods, such as 
linear scaling, performed better than methods using 
quantile mapping. Nevertheless, the correction 
methods were applied to monthly values in these 
previous works. TSCHÖKE et al. (2017) tested two 
distribution functions to correct the bias of the Eta 
Model precipitation climate simulations in a small 
catchment in Southeast Brazil. They found that the 
Gamma distribution adjustment provided more 
efficient correction than the Power transformation 
technique. An adaptive filter technique based on 
the Recursive Least Squares algorithm was applied 
to reduce the Eta model’s bias in climate forecasts 
at the upper and mid-level of the troposphere.

Although the scientific literature´s results 
regarding the effectiveness of bias correction 
techniques vary, the consensus is that these 
methodologies are essential for applying climate 
model data in impact studies. In Brazil, simulations 
of the regional Eta model from the National Institute 
for Space Research (INPE) have been widely used, 
especially for Brazil’s National Communications 
to the United Nations Framework Convention on 
Climate Change (MCTI 2010, 2016, 2021). 

This article aims to describe the bias-corrected 
dataset for the daily outputs of the Eta model, 
covering both the historical period and future 
climate projections. The quality of the new dataset 
is assessed through comparisons with observed 
data for the historical period. In addition, climate 
trends in the corrected and uncorrected outputs 
are compared for future climate periods. The 
climate variables corrected include precipitation, 
potential and actual evapotranspiration, and 2-m 
temperature. Although the corrected dataset was 
produced for a large area covering South America 
and adjacent regions, the present analysis focuses 
on the Brazilian region.

This article is organized as follows: Section 2 
describes the Eta model dataset, the observational 
datasets used for correction and validation, and 
the bias correction methodology; Section 3 
shows the validation for the historical period and 
the statistical features reproduced of the future 
projections after the bias correction procedure; and 
Section 4 concludes on the constructed dataset.
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2 DATA AND METHODOLOGY

In this section, the climate model is initially 
described. Then, the dataset used for correction 
and validation is described, and lastly, the bias 
correction methodology is detailed.

2.1 Eta model dataset

The Eta model is a complex numerical model 
representing the physical and dynamic processes of 
the atmosphere. This is the category of models called 
regional or limited area models, which, therefore, 
require global models to provide information about 
the atmosphere in the lateral contours. A feature 
of the model that gives it its name is the use of 
the vertical coordinate eta (ƞ), considered more 
suitable for simulations in regions with complex 
topography, such as the Andes Mountains. A 
better representation of the topography is achieved 
through the etas coordinate, which represents the 
topography in discrete steps. The approximately 
horizontal surfaces of the eta coordinate contribute 
to reducing errors in calculations of horizontal 
derivatives, such as those related to the force of the 
horizontal pressure gradient (MESINGER 1984).

The Eta model has been developed at INPE 
since 1996 (MESINGER et al. 2012, GOMES 
et al. 2023) and has been widely used in several 
applications, including short- and medium-
term weather forecasts (SIQUEIRA et al. 2016, 
CALADO et al. 2018, SAULO et al. 2000, 
SELUCHI et al. 2003), extended and seasonal 
forecasts (CHOU et al. 2005, 2018, 2020b; 
PILOTTO et al. 2012) and climate change studies 
(PESQUERO et al. 2010; CHOU et al. 2012, 
2014a, b, 2020a, b; IMBACH et al. 2018).

In recent years, the Eta model has undergone 
significant updates to improve its ability to simulate 
various atmospheric and climate phenomena 
(MESINGER et al. 2012, MESINGER et al. 2016). 
These improvements include the implementation 
of new physical parameterizations, such as more 
advanced convection schemes and more realistic 
representations of topography, resulting in a better 
representation of processes such as cloud formation, 
precipitation, and interactions between the 
atmosphere and the surface. In addition, the model 
has been optimized to run on high-performance 
computing platforms, allowing simulations with 
greater spatial and temporal resolution.

One of the main innovations was developing 
a unified version of the Eta model (GOMES et 
al. 2023), in which a single configuration treats 

all time scales (short, medium, and long term). 
This unification simplifies the model’s use and 
facilitates the comparison of results across different 
time scales. Furthermore, the Eta model has been 
continuously developed to meet the demands of 
different scientific communities and end users.

Precipitation, potential and actual 
evapotranspiration, and 2-m temperature are 
the output of the Eta Model from dynamically 
downscaling four global climate models (CHOU 
et al. 2014a, b): BESM (Brazilian Earth System 
Model; NOBRE et al. 2013), CanESM2 (Canadian 
Earth System Model Second Generation; ARORA 
et al. 2011), HadGEM2-ES (Hadley Center Global 
Environmental Model; COLLINS et al. 2011), and 
MIROC5 (Model for Interdisciplinary Research, 
version 5; WATANABE et al. 2010). The Global 
Climate models produced experiments following 
the CMIP5 (Coupled Model Intercomparison 
Project Phase 5) protocol to support the IPCC 
(Intergovernmental Panel on Climate Change) 
Fifth Assessment Report (AR5) (IPCC 2013).  
For the future, climate projections considered 
two greenhouse gas concentration scenarios 
(Representative Concentration Pathways, RCP): 
RCP4.5 and RCP8.5. The RCP4.5 is intermediate 
between the most optimistic and the most 
pessimistic AR5 scenarios. This RCP is directed 
towards a future with a relatively optimistic 
reduction in emissions, with equivalent CO2 
concentrations of 600 ppm, showing stabilization 
after the end of the 21st century (BJØRNÆS 2013). 
The RCP8.5 scenario is the most pessimistic of 
the AR5 scenarios, where a future without public 
policy changes to reduce emissions is assumed, 
contributing to the increase in CO2 emissions at the 
end of the century by three times more than current 
levels (BJØRNÆS 2013). Hereafter, the four-
member Eta downscaling ensemble simulations 
of the baseline period will be referred to as Eta 
simulations and the four-member ensemble Eta 
downscaling projections of the future climate as 
Eta RCP4.5 or Eta RCP8.5 projections.

It is essential to highlight that, despite 
the availability of CMIP6 and its SSP (Shared 
Socioeconomic Pathways) scenarios, the Eta-
CMIP5 projections remain an important reference 
for impact studies in South America. The 
concomitant use of both sets will allow a more 
robust analysis of future climate uncertainties 
and an assessment of the evolution of climate 
projections over time.
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The Eta Model outputs the downscaling at a 
regular grid of 0.2 x 0.2 degrees latitude x longitude 
at 3-hour intervals for surface variables and 6-hour 
intervals for three-dimensional variables, covering 
South America, a part of Central America, and 
the Caribbean. The bias-corrected dataset was 
produced at the daily scale, maintaining the same 
spatial coverage (Figure S1 in the supplementary 
material) and horizontal resolution as the raw Eta 
model outputs. This dataset spans from 1976 to 
2005, regarded as the historical period or baseline, 
and from 2006 to 2099, regarded as the future 
period.

2.2 Observational datasets

Two groups of observational datasets are used 
in this study. One group is intended to apply bias 
correction, while the other is intended to validate 
the correction. Using two distinct groups of 
observational datasets ensures that the validation 
step is independent of the correction step. Both 
datasets were selected considering the availability 
of daily observation, time series with at least 
thirty years, and a horizontal resolution closer 
to or higher than that of the Eta model outputs. 
Bias corrections were applied to precipitation, 
potential and actual evapotranspiration, and 2-m 
air temperature. The potential evapotranspiration 
output from the Eta model is estimated from 
the reference evapotranspiration, based on the 
Penman-Monteith method developed by the 
Food and Agriculture Organization of the United 
Nations (FAO) (ALLEN et al. 1998), from now on 
referred to as PM-FAO56.

The observational datasets used as a 
reference for model bias correction are comprised 
of the MSWEP for precipitation, the ERA5-Land 
for evapotranspiration (actual and potential), 
and a combination of the BR-DWGD (Brazilian 

Daily Weather Gridded Data), which covers only 
the Brazilian territory, and the ERA5 for the 
rest of model domain for the 2-m temperature. 
The datasets BR-DWGD for precipitation and 
potential evapotranspiration, GLEAM for 
actual evapotranspiration, and SAMeT for 2 
m temperature were used to validate the bias-
corrected outputs. All datasets were resampled 
to the same grid and resolution of the Eta model 
outputs using the native bilinear interpolation 
function of the GrADS (Grid Analysis and Display 
System) software. All datasets provide 30 years of 
data for approximately similar periods, providing 
robustness and reliability to the analyses, except 
for the one used for temperature validation (i.e., 
SAMeT). Table 1 summarizes the datasets used in 
this work, with additional descriptions presented 
below.

MSWEP (Multi-Source Weighted-
Ensemble Precipitation; BECK et al. 2017) is a 
global precipitation dataset of approximately 10 
km horizontal resolution, spanning from 1979 to 
the present day with a temporal frequency of 3 
hours, daily and monthly, specifically built for 
hydrological modeling. MSWEP was produced 
from the combination of rainfall stations, 
satellite precipitation estimates, and atmospheric 
reanalysis. Due to its good performance compared 
to other satellite products and in situ data (SUN et 
al. 2018, MOREIRA et al. 2019), MSWEP has been 
recommended for use in studies and applications 
that require high-resolution precipitation data 
(SATGÉ et al. 2020, CONDOM et al. 2020, 
BRÊDA et al. 2022), and is therefore chosen to 
correct the outputs of the Eta model.

The ERA5-Land reanalysis (MUNOZ-
SABATER et al. 2021) is a comprehensive dataset 
that provides surface variables simulated by the 
offline CHTESSEL land surface model, which 

Climate variable Observational datasets 
for bias correction Period Observational datasets 

for validation Period

Precipitation MSWEP
(BECK et al. 2017)

1980-2009 BR-DWGD
(XAVIER et al. 2022)

1976-2005

Actual Evapotranspiration ERA5-Land
(MUÑOZ-SABATER et al. 2021)

1981-2010 GLEAM
(MIRALLES et al. 2011)

1980-2009

Potential Evapotranspiration ERA5-Land
(SINGER et al. 2021)

1981-2010 BR-DWGD
(XAVIER et al. 2022)

1976-2005

2-m air temperature BR-DWGD + ERA5
(XAVIER et al. 2022, HERSBACH et al. 2019)

1981-2010 SAMeT
(ROZANTE et al. 2021)

2000-2005

TABLE 1 – Corrected climate variables, data sources used for correction and validation, and availability period.
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stands for Carbon Hydrology-Tiled ECMWF 
(European Centre for Medium-Range Weather 
Forecasts) Scheme for Surface Exchanges over 
the Land surface model. The CHTESSEL model 
is forced by ERA5 reanalysis (HERSBACH et al. 
2019) to produce the ERA5-Land dataset. The 
ERA5-Land dataset, with 9-km spatial resolution 
and hourly frequency, provides a detailed 
representation of the Earth's surface, including 
elevation correction for near-surface temperature. 
Due to their high spatial resolution and excellent 
performance, “ERA” reanalysis has been used to 
remove biases in atmospheric models (JOHNSON 
et al. 2019, LORENZ et al. 2021). For this reason, 
ERA5-Land was chosen as a reference to correct 
the evapotranspiration outputs of the Eta model. 
Actual evapotranspiration, provided directly by 
ERA5-Land, is based on the Penman-Monteith 
method. Potential evapotranspiration was 
estimated using the PM-FAO56 method, applied 
to the ERA5-Land variables, as supplied by 
SINGER et al. (2021).

The BR-DWGD, often referred to as 
the XAVIER et al. (2022) dataset, has a grid 
resolution of 0.1° x 0.1° over the Brazilian 
territory and covers 60 years, from 1961 to 2020. 
This dataset was used as a reference to perform 
the temperature correction. Produced from the 
interpolation of in situ observational data from the 
National Water and Sanitation Agency (ANA) and 
the National Institute of Meteorology (INMET), 
BR-DWGD offers a detailed representation 
of the Brazilian climate and is widely applied 
in hydrometeorological and impacts in Brazil 
(BALLARIN et al. 2023). To complete the 
coverage of South America, since the BR-DWGD 
dataset only covers the Brazilian territory, ERA5 
reanalysis data were used (HERSBACH et al. 
2019). The choice of ERA5 is justified by its 
superiority in representing the annual 2-meter 
temperature cycle in the region, compared to 
other sets such as the CRU (Climatic Research 
Unit; NEW et al. 1999). The combination of BR-
DWGD with ERA5 allowed the construction of a 
homogeneous and high-quality dataset for South 
America.

Thus, as mentioned, the corrected Eta 
model outputs were validated using the BR-
DWGD datasets for precipitation and potential 
evapotranspiration, GLEAM for actual 
evapotranspiration, and SAMeT for 2-m 
temperature. Potential evapotranspiration from 
the BR-DWGD dataset is estimated from a 

reference crop based on the PM-FAO56 method 
(XAVIER et al. 2016, XAVIER et al. 2022). In the 
GLEAM (Global Land Evaporation Amsterdam 
Model) dataset, evapotranspiration processes 
are based on the Priestley-Taylor equation, 
which divides the terrestrial components of 
evapotranspiration into canopy transpiration, 
soil and open water evaporation, interception 
loss, and sublimation (MIRALLES et al. 
2011, MARTENS et al. 2017). Each grid box 
comprises four land cover fractions: bare soil, 
sparse vegetation, dense vegetation, and open 
water. The evapotranspiration rate is calculated 
individually for each type of cover and then 
added to obtain the grid box value. The Priestley-
Taylor equation is used to estimate potential 
evapotranspiration, which is then adjusted for 
actual evapotranspiration, considering the type of 
soil cover and an evaporative stress factor derived 
from root zone soil moisture and water content 
of plants. The GLEAM used in this study (v3.3a) 
has 0.25° of resolution and is composed of daily 
information from 1980 to the present. SAMeT 
(South American Mapping of Temperature) is a set 
of high-resolution daily temperature data (0.05° x 
0.05°) covering South America from 2000 to the 
present day (ROZANTE et al. 2021). The dataset 
combines information from meteorological 
stations and satellite products. Additionally, 
SAMeT incorporates temperature adjustments 
based on elevation and lapse rate.

2.3 Bias correction method

2.3.1 Applied to the baseline period

In this work, the Empirical Quantile 
Mapping (EQM) method (BÁRDOSSY & 
PEGRAM 2011) was selected to correct the bias 
in the Eta model outputs. EQM is a distribution 
transformation method that stands out for its 
effectiveness and broad applicability. Quantile 
Mapping (QM) methods have the advantage 
of correcting not only the mean and standard 
deviation but also higher-order distributional 
moments, such as skewness and kurtosis 
(GUDMUNDSSON et al. 2012), which is 
crucial for the representation of extreme events. 
Furthermore, EQM does not require assumptions 
about the data distribution, making it suitable for 
a wide range of climate variables. Among the 
QM methods, EQM was selected because of its 
wide application and good performance in several 
studies (THEMEßL et al. 2011, CHEN et al. 2013, 
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IVANOV & KOTLARSKI 2017, MENDEZ et al. 
2020, YERSAW & CHANE 2024) and ability 
to preserve the statistical characteristics of the 
data. In addition, the approach used to correct 
the future climate, as presented in the following 
subsection, tends to preserve the trends of the raw 
projections (BÁRDOSSY & PEGRAM 2011), 
which is essential for climate change analysis. 
Although EQM is an effective tool, it is important 
to note that its performance may vary depending 
on the characteristics of the data and the specific 
application (ZHAO et al. 2017). Other QM methods, 
such as quantile delta mapping (CANNON et al. 
2015), scaled distribution mapping (SWITANEK 
et al. 2017), multivariate quantile delta mapping 
(CANNON 2018), piecewise-quantile mapping 
(ZHANG et al. 2022), among others, also have 
their advantages and may be more appropriate in 
certain situations. However, EQM was selected for 
this study due to its flexibility, ease of application, 
and ability to preserve climate trends, having been 
successfully applied to the outputs of the regional 
Eta model in previous studies (MOHOR et al. 
2015; MARTINS et al. 2018, 2019, 2023; PAIVA 
et al. 2024).

EQM is based on constructing empirical 
cumulative distribution functions (CDFs), which 
are daily values of observations and model data sets. 
CDFs are estimated at regularly spaced quantile 
levels, ranging from 0 to 1. Linear interpolation 
is applied to obtain the corresponding values for 
quantile levels that were not directly observed. 
CDFs are constructed for each grid point and 
each month of the year. The method assumes 
that systematic errors are reduced by shifting the 
distribution curves of the simulations to the same 
frequency level as the observations. The correction 
of the simulated variable for the grid point x and 
day t can be expressed as follows:

	     (1)

Where ZD is the corrected variable, ZR 
is the variable from the model output in the 
baseline period, and FO and FR are the CDFs 
from observations and model outputs of the 
baseline period, respectively. The transformation 
guarantees that if the observation and model 
output have equal periods, the CDFs from both 
datasets, i.e., CDF of the observation (FO) and the 
CDF of the bias-adjusted model output (FD), will 
be equal:

                 (2)

2.3.2 Applied to the future period

This work employed the Double Empirical 
Quantile Mapping (DEQM) approach 
(BÁRDOSSY & PEGRAM 2011) to correct 
the climate model outputs in the future part of 
the dataset. The method assumes that future 
climate projections have systematic and therefore 
persistent errors. This approach recognizes the 
potential for changes in the responses of climate 
variables from the current climate toward the 
future climate, implicitly incorporating them into 
the correction process of the projections. The 
bias correction process in the DEQM approach 
is divided into three steps. The first step is to 
match the future value with the corresponding 
value of the baseline CDFs. In the second step, the 
corresponding value’s quantile-quantile transform 
(QQ) is obtained from the horizontal shift at the 
same quantile level from the baseline CDF to 
the observational CDF. Finally, in the third step, 
the same QQ transform is applied to the future 
value to obtain the final bias-corrected value 
of the projections. Therefore, the mathematical 
relationship for applying the correction of the 
future projections for the grid point x and day t is 
given by equation (3), illustrated in figure 1.

         (3)

Where ZDF is the bias-corrected value of a 
variable in the future climate projections, ZRF is 
the original value in the future climate projections, 
and FO and FR are, respectively, the CDFs of the 
observations and simulations of the baseline period.

2.4 Assessment of precipitation extremes

To gain a more comprehensive understanding 
of the precipitation extremes reproduced by the Eta 
ensemble in Brazil, six precipitation extreme indices 
defined by the ETCDDI (Expert Team on Climate 
Change Detection and Indices; KARL et al. 1999, 
PETERSON et al. 2001) were estimated to provide 
information on the extreme precipitation events’ 
frequency, intensity, and duration. The indices are 
the number of consecutive dry and consecutive 
wet days (CDD and CWD, respectively); the total 
annual precipitation on very rainy and extremely 
rainy days (R95p and R99p, the 95th percentile 
and the 99th percentile of the daily precipitation 
distribution); and maximum 1-day and maximum 
5-day precipitation (RX1day and RX5day). 

These indices were calculated from the 
Eta model, raw and bias-corrected datasets, and 
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the BR-DWGD observational dataset used for 
validation. An additional precipitation dataset, 
the NEX-GDDP dataset (NASA Earth Exchange 
Global Daily Downscaled Climate Projections; 
THRASHER et al. 2012), was included for 
comparison. The NEX-GDDP ensemble is derived 
from the statistical downscaling of CMIP5 
(Coupled Model Intercomparison Project version 
5) global model simulations. The horizontal 
resolution is 0.25° x 0.25°. 

AVILA-DIAZ et al. (2020) analysis showed 
that the climate indices from the NEX-GDDP 
ensemble performed better than the raw Eta 
ensemble. The extreme precipitation indices from 
NEX-GDDP were included in the analyses by taking 
the average of the four best models, according to 
AVILA-DIAZ et al. (2020): the CNRM-CM5, 
CCSM4, MRI-CGCM3, and CESM1-BGC. The 
same period of the Eta dataset was considered, 
1976-2005.

3 RESULTS AND DISCUSSION

3.1 Evaluation of the baseline period dataset

The Eta simulations before the bias correction 
are referred to as the raw dataset; in contrast, the 
Eta ensemble simulations with bias correction 
are referred to as the bias-corrected dataset. The 
bias correction was applied to each member of 
the ensemble. The evaluation was based on the 

ensemble mean of the Eta simulations driven by 
the four CMIP5 global climate models for the 
historical, or baseline, period between 1976 and 
2005. The averages are further taken for the model 
grid points over the Brazilian territory. Despite the 
technique being applied over the entire continental 
domain, as shown in figure S1, the evaluation is 
shown over the Brazilian territory.

3.1.1 Annual mean 

Figure 2 shows the annual mean 
of precipitation, actual and potential 
evapotranspiration, and 2-m temperature for the 
baseline period. The bias correction applied to 
precipitation more adequately adjusts its spatial 
pattern throughout Brazil, mainly in the central 
and eastern Amazon, where without the correction, 
the simulated precipitation ranged from 30% to 
60% less than observed precipitation records. This 
adjustment is significant since Amazon rain is 
essential in maintaining atmospheric moisture in the 
region that is transported to the south and southeast 
of the South American continent (e.g., MARTINEZ 
& DOMINGUEZ 2014). A significant reduction 
in precipitation errors in some coastal regions 
stands out, such as in the northernmost part of the 
Amazon, the coastal areas in Southeast Brazil, and 
South Brazil. This improvement is produced by the 
more refined spatial resolution of the observational 
database to correct precipitation. The Percentage 

FIGURE 1 – A sketch of the quantile-quantile transform applied to the baseline climate (a) and the double 
quantile-quantile transform applied to the future climate (b), both based on Bárdossy and Pegram (2011). The 
CDF curves are fitted to the same level as the observational frequency in the baseline climate transform. In 
the double transform for future climate, a future frequency distribution function is related to the observational 
CDF through the corresponding CDF of the Eta model obtained from the baseline period. The Eta future point 
(closed red circle) is paired with the same value in the Eta baseline CDF. The point is shifted at the same 
quantile level toward the observational CDF and back to the same quantile level in the future value. The result 
is the point on the open circle, preserving the probability of the shifted value.



Tavares et al.

10

Mean Absolute Errors (PMAE) of the precipitation 
simulations confirm that applying bias correction to 
the Eta simulations dataset improves precipitation 
patterns by reducing errors throughout Brazil.

After applying bias correction, the pattern 
of real evapotranspiration simulated by the Eta 
model generally agreed with the GLEAM dataset, 
especially in Brazil’s North, Southeast, and Central-
West regions. The PMAE was significantly reduced 
in these areas. However, a small increase in 
PMAE was noted in the Northeast of Brazil after 

bias correction. This result can be explained by the 
differences between the real evapotranspiration 
estimates between the GLEAM dataset and the 
ERA5-land reanalysis, used as a reference for bias 
correction. After bias correction using the EQM 
method, the climatological pattern of the corrected 
dataset presents the same pattern as the reference 
set used for correction, as shown in figure S2 
(supplementary material). The differences between 
the GLEAM and ERA5-Land datasets can be 
attributed in part to the different methods used for 

FIGURE 2 – Annual total precipitation (from the top, first row), actual evapotranspiration (second row), potential 
evaporation (third row) in mm/year, and annual mean 2-m temperature (fourth row) (°C). From the left, the 
observations (first column), Eta simulations (second column), and Eta simulations after bias correction (third 
column). The two rightmost columns are the Percentage Mean Absolute Error (PMAE) of the Eta simulations 
(fourth column) and the Eta simulations after bias correction (fifth column).
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estimating actual evapotranspiration (Priestley-
Taylor vs. Penman-Monteith), as well as the different 
spatial resolutions adopted (25 km vs. 9 km).

Uncertainties in the estimates of actual 
evapotranspiration from different global datasets, 
which result in significant variations in the values 
obtained, have also been pointed out in other studies 
(SÖRENSSON & RUSCICA 2018, ELNASHAR 
et al. 2021, RUHOFF et al. 2022). In South 
America, RUHOFF et al. (2022) compared eight 
global products and noticed more uncertainties 
among those datasets derived from remote sensing, 
such as the GLEAM dataset. The reduction of the 
actual evapotranspiration PMAE would be more 
robust if the SGAE dataset (Synthesis of Global 
Actual Evapotranspiration; ELNASHAR et al. 
2021) were used for validation (Figure S2). SGAE 
is a product constructed from twelve global actual 
evapotranspiration datasets, so it carries a relatively 
lower uncertainty. However, the SGAE dataset is 
only available on a monthly mean basis; therefore, 
it did not fulfill the requirement for this study. 

Unlike actual evapotranspiration, applying 
bias correction to potential evapotranspiration 
resulted in a substantial reduction of approximately 
40% across the entire Brazilian territory, as 
indicated by the PMAE. The original error in 
the raw dataset was due to excessive potential 
evapotranspiration. This reduction in error is 
especially relevant in tropical regions such as 
the Amazon, where potential evapotranspiration 
should be lower than precipitation and closer 
to actual evapotranspiration (ZHANG et al. 
2001). The relationship between these water 
balance components is improved after the 
application of bias correction, thus demonstrating 
the importance of adjusting the outputs of 
numerical models. The accurate representation 
of the climatic characteristics of precipitation 
in South America, especially in the Amazon, 
is a recurring challenge for regional and global 
climate models. As demonstrated by Eta model 
simulations, the underestimation of precipitation 
in the tropical region is a common pattern (YIN 
et al. 2013, GULIZIA & CAMILLONI 2014, 
ALMAZROUI et al. 2021, ORTEGA et al. 2021, 
DIAS & REBOITA 2021, OLMO et al. 2022, 
BRESCIANI et al. 2023). The combination of 
dynamic and statistical downscaling is promising 
in generating more accurate model-derived 
datasets and reducing errors in the water balance 
components. This improvement has significant 
implications for projecting extreme events such as 

droughts and floods, which can contribute to more 
efficient water resource planning, especially in 
regions with high water vulnerability. However, it 
is important to emphasize that bias correction is a 
complementary statistical tool and that continuous 
improvement of climate models is essential for a 
more physically based reproduction of the climate 
system. This is particularly crucial in complex 
regions such as the Amazon, where the interaction 
between atmosphere, vegetation, and soil plays a 
fundamental role in the hydrological cycle.

The raw dataset of the Eta simulations 
reproduces the annual mean 2-m temperature 
pattern in Brazil, with warmer air towards the 
Equator, cooler air towards the extratropic, and 
the topographic features revealed by the cooler 
air. However, in most of Brazil, the raw dataset 
has a cold bias, which was reduced by about 10%, 
especially in the eastern part, such as Northeast 
Brazil.

3.1.2 Annual cycle

The raw dataset of the Eta simulations shows 
a small amplitude in the precipitation annual 
cycle. The bias correction technique increases the 
precipitation amount during the rainy season, from 
November until April, and reduces the precipitation 
overestimated during the dry season, from June 
until August (Figure 3a).  The bias-corrected 
precipitation annual cycle overlays the MSWEP 
and the BR-DWGD observed precipitation cycles. 

The raw dataset of the Eta simulations of 
the actual evapotranspiration shows overestimates 
(Figure 3b). The technique corrects the annual 
cycle by reducing the overestimates from July until 
September. It may appear that the technique has 
failed to remove the bias from October to March, as 
the raw Eta simulation of actual evapotranspiration 
more closely matches the observational cycle; 
however, this reveals the uncertainty of the 
observational datasets of actual evapotranspiration. 
The annual cycle of actual evapotranspiration 
from the ERA5-land dataset, used for correction, 
disagrees with the cycle of the GLEAM dataset, 
used for validation. Despite the uncertainties, the 
amplitude of the annual cycle of the bias-corrected 
actual evapotranspiration has improved over the 
raw actual evapotranspiration. 

Unlike the actual evapotranspiration, the raw 
Eta simulations of potential evapotranspiration 
practically show constant overestimates in all 
months of the year (Figure 3c). This discrepancy 
can be attributed, in part, to the systematic errors 
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of the variables input to the Penman-Monteith-
FAO56 method, such as solar radiation, which is 
overestimated by the Eta model, as demonstrated 
by CAMPOS et al. (2018). However, after applying 
the bias correction, the annual cycle of potential 
evapotranspiration simulated by Eta shows a better 
agreement with the annual cycle observed in the 
GLEAM dataset, indicating that the correction 
effectively reduced systematic discrepancies.

The raw Eta simulations of 2-m temperature 
show a larger annual cycle amplitude than the 
SAMeT observational dataset. The bias-corrected 
Eta simulation of 2-m temperature shows an annual 
cycle closer to the SAMeT dataset, particularly 
between April and August. However, it tends to 
overestimate the temperature in the other months, 
characteristics passed by the observational set 
used to correct the model (dashed black curve). 
The two observational 2-m temperature datasets, 
BR-DWGD and SAMeT, exhibit discrepancies 
throughout the year.

Additionally, one aspect to be considered in 
the analyses of annual cycles is that the approach 

used by the EQM method to apply the correction for 
the present climate, by ensuring the preservation of 
the observational mean values (Equation 2), leads, 
at the climatological scale, to the loss of variability 
between the different members of the Eta ensemble. 
This loss of variability results in almost identical 
annual climatological cycles of the corrected 
models, which can lead to an overestimation of the 
confidence in the analyses, as evidenced in figure 
S3 of the supplementary material.

3.1.3 Frequency distribution and extreme indices

The frequency distributions of the daily 
precipitation, actual and potential evapotranspiration, 
and 2-m temperature in Brazil are shown in figure 
4. The frequency is on the main y-axis, while the 
PMAE is on the secondary y-axis. To highlight the 
extreme values of the distributions, both the main 
and secondary axes were plotted on a logarithmic 
scale. The frequency distributions of the two 
observational datasets enable comparisons against 
the bias-corrected Eta distributions and show the 

FIGURE 3 – Annual cycle of (a) Precipitation (mm/month), (b) Actual Evapotranspiration (mm/month), (c) 
Potential evapotranspiration (mm/month), and (d) 2-m temperature (°C). Black curves refer to the monthly 
mean of the observations for validation (Table 1), solid blue lines refer to the Eta ensemble mean simulations, 
and solid red lines refer to the simulations after bias correction. The observations used for bias correction of 
the Eta ensemble are also presented (dashed black curves). Mean values are taken over the Brazilian territory.
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observational dataset’s uncertainty in a frequency 
distribution.

The bias-corrected distributions showed 
significant changes in the frequency of daily 
precipitation (Figure 4a), evapotranspiration (Figure 
4b, c), and air temperature (Figure 4d) in Brazil, 
providing a better fit to the observed curve. This 
improvement is seen in reducing PMAE bars in 
the bias-corrected Eta dataset for all the analyzed 
variables. The frequency distribution of potential 
evapotranspiration, previously more frequent 
in higher values (6-8 mm/day), approached the 
observed distribution after correction, with the 
most frequent values occurring between 3 and 4 
mm/day. Air temperature also showed a substantial 
adjustment, with the most frequent values varying 
from 24-26°C to 26-28°C, better aligned with the 
observations. The actual evapotranspiration agreed 
with observations for the most frequent values but 
overestimated extreme events, with values above 
17 mm/day. The correction contributed to a better 
representation of these extreme events. Despite the 
gains of the correction, it is important to highlight that 

there are still observational uncertainties, especially 
the extremes of the distributions (maximum values), 
not only for real evapotranspiration but also for the 
other analyzed variables.

It should be noted that the bias correction 
applied to precipitation caused an increase in the 
frequency of daily precipitation above 33 mm. 
This more frequent heavy precipitation is a feature 
inherited from the MSWEP observational dataset 
used for correction. It is known that remote sensing-
based or merged rainfall observational products 
(remote sensing + in situ data and atmospheric 
reanalysis), such as MSWEP, tend to diverge 
from in situ-only datasets at finer temporal scales 
(BAEZ-VILLANUEVA et al. 2021, SAPUCCI et 
al. 2022, GEBRECHORKOS et al. 2023, ZHANG 
et al. 2023). Furthermore, the divergence can also 
be attributed to the observational uncertainty of 
the datasets used for validation, such as the BR-
DWGD, which is composed exclusively of in situ 
measurements. Given the vast territorial extension 
of Brazil and the low density of monitoring stations 

FIGURE 4 – Frequency distribution of daily values (%) of precipitation (mm/day) (a), actual evapotranspiration 
(mm/day) (b), potential evapotranspiration (mm/day) (c), and 2-m temperature (°C) extracted from Eta 
model simulations over Brazil, before (Eta_raw, blue bars) and after bias correction (Eta_bc, red curve). The 
observational dataset used for bias correction of the Eta ensemble (Obs_bc, black dashed curve) is shown 
underlying the Eta_bc curves. The secondary axis of the ordinates (the right axis) shows each variable’s mean 
absolute percentage error (PMAE). The primary and secondary axes of the ordinates are on a logarithmic scale
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across the country (SALIO et al. 2015, XAVIER et 
al. 2021), especially given the relatively small spatial 
scale of the most intense rainfall events, it is probable 
that the most intense events may be missed by in 
situ measurements of a low-density observational 
network or smoothed by the interpolation method 
used to construct the gridded dataset. Despite the 
differences found, the choice for the MSWEP dataset 

for bias correction in this work is supported by its 
generally relatively superior performance compared 
to other rainfall products such as CHIRPS, TRMM, 
and CMORPH (BAEZ-VILLANUEVA et al. 2018, 
MOREIRA et al. 2019, BETTOLI et al. 2021, 
SAPUCCI et al. 2022).

Figure 5 presents six extreme precipitation 
indices to assess the Eta model’s ability to represent 

FIGURE 5 – Indices of the annual precipitation extremes averaged over the period 1976-2005, from left to right: the 
observational BR-DWGD dataset (first column), simulated by the NEX-GDDP datasets (NASA Earth Exchange 
Global Daily Downscaled Projections; second column) and simulated by the Eta model raw dataset (third column) 
and Eta simulations bias corrected dataset (fourth column). The three columns on the rightmost are the mean 
absolute error (MAE) of the NEX-GDDP dataset, Eta raw dataset, and bias-corrected dataset. The extreme indices 
are the consecutive dry days (CDD; days; first line), consecutive wet days (CWD; days; second line), the 95th 
percentile of daily precipitation or very wet day precipitation (R95p; mm; third line), the 99th percentile of daily 
precipitation or extremely wet day precipitation (R99p; mm; fourth line), maximum 1-day precipitation (RX1day; 
mm; fifth line) and maximum 5-day precipitation (RX5day; mm; sixth line).
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extreme precipitation events in Brazil after bias 
correction. This figure includes not only the raw 
and bias-corrected datasets from the model and the 
BR-DWGD observational data but also the extreme 
precipitation indices averaged from four models 
from the NEX-GDDP ensemble, which have shown 
excellent performance for Brazil (AVILA-DIAZ et 
al. 2020).

The bias correction applied to the Eta 
simulations produced substantial added value in 
the annual indices of the duration of consecutive 
dry days (CDD) and total precipitation of very wet 
and extremely wet days (R95p and R99p), showing 
a spatial pattern similar to the observations and a 
significant reduction in the mean absolute error 
(MAE). As for the duration of consecutive wet 
days (CWD) index, although there are some pattern 
discrepancies, the bias-corrected Eta dataset has 
smaller errors than the raw Eta dataset, particularly 
in some areas of North Brazil. As for the maximum 
precipitation indices in one day (RX1day) and five 
consecutive days (RX5day), the bias correction 
did not significantly improve over the raw data. 
However, the lack of added value can be attributed 
to large differences in the observations to sample 
these extremes in the datasets used for correction 
(MSWEP) and validation (BR-DWGD). After 
correction, the values of the climate indices in the Eta 
ensemble tend to be close to or equal to those in the 

MSWEP ensemble (Figure S4 in the supplementary 
material).

Comparison between the raw Eta and NEX-
GDDP datasets shows that performance varies 
significantly depending on the climate extreme index 
analyzed. The errors in the CDD of the raw Eta dataset 
are larger than those in the NEX-GDDP dataset, on 
the other hand, the errors in the CWD are smaller in 
the raw Eta dataset. For R95p, R99p, RX1day, and 
RX5day, the errors in the raw Eta and NEX-GDDP 
datasets are comparable in magnitude. The choice 
of the most appropriate ensemble depends on the 
specific application and the study area. However, it is 
essential to consider that, as shown previously, errors 
also result from the uncertainty of the observational 
dataset. Therefore, selecting a single ensemble as the 
"best" for all situations should be done cautiously, 
as it may not capture the uncertainties. In this sense, 
it is important not to neglect the different datasets 
available for Brazil, given that high-resolution 
simulations for the country are limited.

The comparison between the raw and bias-
corrected Eta simulations and the NEX-GDDP 
dataset in reproducing the precipitation extremes in 
Brazil is shown in table 2. The mean error and the 
pattern correlation show that the bias-corrected Eta 
dataset significantly improved the extreme indices 
CDD, CWD, R95p, and R99p over the raw Eta and 
showed superior performance compared to the NEX-

Index Evaluation Metric BR-DWGD NEX-GDDP raw Eta bc Eta

CDD
Mean value 42.5 45.8 47.9 48.7
MAE --- 9.3 18.9 6.9
Pattern correlation --- 0.9 0.7 1.0

CWD
Mean value 25.8 33.1 26.9 19.4
MAE --- 9.6 6.8 6.6
Pattern correlation --- 0.8 0.6 0.8

R95p
Mean value 335.7 336.8 275.3 389.2
MAE --- 62.1 91.4 44.4
Pattern correlation --- 0.7 0.7 0.9

R99p
Mean value 102.6 101.0 77.5 116.9
MAE --- 23.7 27.5 17.0
Pattern correlation --- 0.5 0.7 0.9

RX1day
Mean value 56.8 55.5 44.8 73.4
MAE --- 12.7 13.4 16.8
Pattern correlation --- 0.3 0.6 0.5

RX5day
Mean value 126.5 128.3 110.9 157.4
MAE --- 17.3 23.9 32.6
Pattern correlation --- 0.5 0.5 0.5

TABLE 2 – Mean values, mean absolute errors, and pattern correlations of annual extreme precipitation indices 
over Brazil of the NEX-GDDP datasets, Eta raw simulations dataset, and Eta bias-corrected simulations 
concerning the BR-GWGD dataset for 1976-2005. The best-performing metrics are highlighted in bold. 
The extreme indices are the consecutive dry days (CDD; days), consecutive wet days (CWD; days), the 
95th percentile of daily precipitation or very wet day precipitation (R95p; mm), the 99th percentile of daily 
precipitation or extremely wet day precipitation (R99p; mm), the maximum 1-day precipitation (RX1day; mm), 
and the maximum 5-day precipitation (RX5day; mm).
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GDDP dataset. On the other hand, for the remaining 
two indices, RX1day and RX5day, the NEX-GDDP 
dataset has smaller errors; however, their pattern 
correlations are equally low or even lower when 
compared with the Eta datasets.

3.2 Assessment of the bias-corrected future period 
dataset

After applying the bias correction technique 
to climate projections, a question arose: will the 

corrections alter the sign of the change in the 
projected climate? Figure 6 shows the changes in 
annual precipitation, actual evapotranspiration, 
potential evapotranspiration, and 2-m temperature 
between the two climate periods 2041-2070 and 
1976-2005 under the two scenarios RCP4.5 and 
RCP8.5.

After the bias correction in both RCP 
scenarios, the reduction in annual precipitation in 
most parts of the country has weakened. The area of 

FIGURE 6 – Changes in annual precipitation (mm), actual evapotranspiration (mm), potential evapotranspiration 
(mm), and 2-m temperature (°C) between the future 2041-2070 and the historical 1976-2005 for the bias-
corrected (bc) and uncorrected dataset (raw), average over the downscaling of the four global climate models. 
The pattern correlation (corr) between the raw and bc changes equals 1 in all variables and scenarios.
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precipitation reduction in the raw dataset also shrank 
slightly in the bias-corrected dataset, leaving some 
areas of practically no change between the climate 
periods. In the northern part of Northeast Brazil, a 
small area of increase in precipitation has expanded 
in the bias-corrected dataset. In South Brazil, an area 
of increase in precipitation has no clear change from 
the raw to the bias-corrected dataset in both RCP 
scenarios. 

Under RCP4.5, the areas of reduction in the 
annual actual evapotranspiration in most parts of 
the country show a weaker reduction. Similarly, 
the areas of increase in actual evapotranspiration in 
South Brazil also show a weaker reduction under 
RCP4.5. However, under RCP8.5, one can hardly 

notice any change after applying the bias correction. 
For potential evapotranspiration, the patterns of 
changes show no clear modification after applying 
the bias correction under both RCP scenarios. The 
spatial pattern of changes in temperature remains 
practically unchanged, as warming is expected 
everywhere in Brazil. The pattern correlation 
between the changes in the raw and the bias-
corrected datasets is 1 for all four variables and RCP 
scenarios.

Another question that may arise after the bias 
correction of climate projections is whether the 
corrections alter the rate of the changes imposed by 
the RCP scenario trajectories. Figure 7 shows the 
time series of the mean annual 2-m temperature in 

FIGURE 7 – Time series of the mean annual 2-m temperature (°C) in Brazil, obtained from simulations (gray 
line) and projections (RCPs scenarios) of the Eta model dataset, raw and bias-corrected, together with the 
annual mean values and the trend of observed values.
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Brazil for the historical and future periods under 
RCP4.5 and RCP8.5. In the historical period, the 
raw dataset clearly shows a cold bias, which is 
substantially reduced after the bias correction is 
applied. After the correction, the model simulations 
more accurately reflected the observed historical 
trend. The reduction in the dispersion in the 
simulated values, evidenced by the gray-hatched 
plume, confirms the decrease in uncertainty in the 
simulations. This reinforces the quality of the model 
fit and suggests greater reliability in the projections 
of future scenarios. For the future period, a higher 
rate of warming is demonstrated in the scenarios 
projected with bias removal, reaching an annual 
mean value at the end of the 21st century of 28°C 
in the RCP4.5 scenario and 31.4°C in the RCP8.5 
scenario. Furthermore, it is interesting to note 
that after 2005, in the future period, observations 
closely follow the corrected temperature trend of 
the RCP4.5 scenario.

4 CONCLUSIONS

The downscaling Eta simulations and 
projections driven by four CMIP5 global climate 
models contain errors like general numerical 
models. Impact models, such as crop and 
hydrological models, may use the Eta simulations 
and projections to drive their runs, which may have 
errors amplified in their outputs. Since the impact 
models are generally calibrated using observational 
datasets, bias-corrected climate model outputs 
to drive the impact models may result in smaller 
errors from the latter models. This work aimed 
to describe the bias-corrected dataset constructed 
from the Eta model ensemble simulations and 
projections that is, historical and future periods, 
driven by four CMIP5 global climate models. The 
future assumed two scenarios of greenhouse gas 
concentrations, RCP4.5 and RCP8.5.

The empirical quantile mapping technique 
reduced the errors in the precipitation pattern, 
potential evapotranspiration, and 2-m temperature 
simulations. The reduction of the errors in the 
actual evapotranspiration simulations was mainly 
limited to the eastern part of Brazil. The overall 
cold temperature bias was substantially removed.

The annual cycle of these variables showed 
substantial improvement after the bias correction. 
The too-small amplitude of the precipitation 
cycle and the too-large amplitude of the 2-m 
temperature cycle were corrected, and the bias-
corrected cycle of these variables closely followed 

the observations. The apparently less efficient bias 
correction of actual evapotranspiration highlights 
the large uncertainty in the observational datasets 
containing this variable.

The frequency distribution of daily precipi-
tation, potential and actual evapotranspiration, and 
2-m temperature showed that the bias-corrected 
Eta dataset was significantly improved over the 
raw Eta, especially in reproducing the most fre-
quent daily values. However, for precipitation, the 
bias-corrected dataset overestimated the frequency 
of the intense precipitation rates, inheriting the cha-
racteristics of the dataset used for the correction. 
This overestimation showed observational uncer-
tainty, especially for daily rates above 33 mm/day. 
This uncertainty was also present in the bias cor-
rection of extreme precipitation indices RX1day 
and RX5day. Clearly, the bias correction produced 
significant gains in the CDD, CWD, R95p, and 
R99p indices over the raw Eta datasets.

The bias corrections were also applied to the 
projections of the future climate. For future datasets, 
the changes in the frequency distribution between 
the future and present climate are considered in the 
bias correction. The bias correction applied to the 
future projection datasets showed that the signs of 
the changes in the raw Eta simulations were mostly 
kept; however, the magnitude of the changes was 
generally reduced. The rate of changes in the 
RCP8.5 is generally larger than in the RCP4.5 
scenarios. After the bias correction application, 
the rate of the changes of the climate variables was 
kept in the projections.

The described dataset is freely available from 
the CNPq LattesData repository at https://doi.
org/10.57810/lattesdata/WAVGSL (TAVARES et 
al. 2023).
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