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ABSTRACT

In hard rock terrains where gneisses and granitoids predominate, groundwater 
is generally considered to be of good quality due to the low solubility of the silicate 
minerals that form these rocks. However, in the long term, silicate minerals weathering 
can interfere in groundwater quality. In the case of fractured aquifers, these changes 
are less predictable due to the heterogeneous and anisotropic behavior of this aquifer 
type. The geological framework in the southern of the State of Espírito Santo is mainly 
formed by hard rocks, where the water quality parameters that serve to know the 
suitability for different types of use have not been studied. This work aimed to fill 
this gap by analyzing 62 groundwater samples collected in 38 wells that exploit the 
Crystalline Aquifer System in the Itapemirim River Catchment in the south of Espírito 
Santo. The hydrogen potential, electrical conductivity, total dissolved solids, turbidity, 
and concentrations of Ca, Mg, Na, Fe, Mn, Pb, Zn, Cd, and Co were analyzed. The 
concentrations of Cd, Co, Pb, and Zn were below the thresholds defined by the Brazilian 
standards for various uses of water. On the other hand, Fe, Mn, and Na, turbidity, and 
total dissolved solids were above the permitted limit for various types of water use. The 
dissolved solids and Na, as well as other groundwater main components, are controlled 
by geomorphological, lithological, and climatic factors, with increasing values to the 
central part of the basin. Differently, Fe, Mn, and turbidity show anomalous values 
randomly distributed in the area, probably due to pedogenetic enrichment of lateritic 
profiles and local structural control. It is possible that the lack of adequate maintenance 
of wells also contributes to such alterations.

Keywords: Fractured aquifers; Iron; Manganese; Hydrogeochemistry.

RESUMO

PARÂMETROS DE QUALIDADE DA ÁGUA SUBTERRÂNEA EM ROCHAS 
CRISTALINAS NO SUL DO ESTADO DO ESPÍRITO SANTO, SUDESTE DO 
BRASIL. Em terrenos de rochas cristalinas onde predominam gnaisses e granitoides, 
a água subterrânea é considerada geralmente de boa qualidade devido à baixa solubi-
lidade dos minerais silicáticos que compõem essas rochas. Porém, em longo prazo, o 
intemperismo destes minerais silicáticos pode interferir na qualidade da água subter-
rânea. Quando se trata de aquíferos fraturados, essas alterações são menos previsíveis 
em função do caráter heterogêneo e anisotrópico intrínseco a tais aquíferos. A região 
sul do Estado do Espírito Santo tem seu arcabouço geológico constituído basicamente 
por terrenos cristalinos, onde os parâmetros de qualidade da água voltados à adequação 
para os diversos usos ainda não foram estudados. O objetivo desse trabalho foi voltado 
ao preenchimento dessa lacuna, por meio da análise de 62 amostras de água subterrânea 
coletadas em 38 poços tubulares profundos que explotam o Sistema Aquífero Cristalino 
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na área de abrangência da Bacia Hidrográfica do Rio Itapemirim, no sul do Estado do 
Espírito Santo. Foram analisados: potencial hidrogeniônico, condutividade elétrica, só-
lidos totais dissolvidos, turbidez e as concentrações de Ca, Mg, Na, Fe, Mn, Pb, Zn, Cd 
e Co. Os teores de Cd, Co, Pb e Zn ficaram dentro da faixa permitida para os diversos 
tipos de uso previstos na normativa ambiental. Por outro lado, o Fe, Mn e Na, além da 
turbidez e sólidos totais dissolvidos estão acima do valor máximo permitido para mui-
tos tipos de uso da água. O aumento dos sólidos dissolvidos e do Na, assim como outros 
constituintes essenciais das águas subterrâneas, obedece aos controles geomorfológico, 
litológico e climático, com enriquecimento na porção central da bacia hidrográfica. De 
forma diferente, o Fe, o Mn e a turbidez apresentam valores anômalos distribuídos de 
forma aleatória pela bacia, provavelmente devido ao enriquecimento pedogenético em 
perfis lateríticos e controle estrutural local. É possível que a falta de manutenção ade-
quada dos poços também contribua com tais alterações. 

Palavras-chave: Aquíferos fraturados; Ferro; Manganês; Hidrogeoquímica.

1 INTRODUCTION

In crystalline rock terrains formed by igneous 
and metamorphic rocks, groundwater flows through 
the Fractured Aquifer System, also called the 
Crystalline Aquifer System (CAS). In this aquifer 
type, water flows through discontinuities in fresh 
rock and the overlying saprolite (DEWANDEL 
et al. 2011), also called weathered mantle or 
regolith. Although low-solubility silicate minerals 
predominate in crystalline rocks, many researchers 
point out problems of high salinity and anomalous 
concentrations of metals and other components in 
those areas. Many of these works were conducted 
in arid and semi-arid regions (e.g., KHOZYEM 
et al. 2019, UDESHANI et al. 2022, NIYAZI et 
al. 2023). However, there are also cases of sites 
where other factors, such as the residence time of 
groundwater in CAS, contribute to increase the 
concentration of chemical elements (e.g., HARTE 
et al. 2012, ROQUES et al. 2014, ADEYEYE et al. 
2020). The dissolution of minerals in silicate rocks 
can locally interfere with water quality. However, 
this can be difficult to predict in fractured aquifers 
due to this aquifer type´s heterogeneous and 
anisotropic character. 

It is essential to highlight that most of the 
global population lives on crystalline rock terrains. 
So, in populous countries where water management 
policies are deficient or absent, the alterations from 
anthropic actions also interfere with groundwater 
quality (MACHIWAL & JHA 2015). Identifying 
the sources of chemical elements or substances 
that occur above the maximum permitted limits 
for different types of water use is crucial to guide 
water resources management policies.

The CAS is the primary groundwater 
source in the State of Espírito Santo, but its 
hydrogeological characteristics are still poorly 
known. Previous works carried out in the south of 
Espírito Santo showed that remarkable variations 
occur in the main composition of groundwater 
(NEVES et al. 2021, OLIVEIRA et al. 2022), but 
they did not evaluate the water quality parameters 
related to adequacy for consumption, as the 
presence of trace metals and others that appear in 
the environmental rules. Thus, this work aims to 
describe the groundwater quality parameters in 
crystalline terrains of the south of Espírito Santo 
State, involving the Itapemirim River Catchment 
(IRC) (Figure 1).

2 STUDY AREA

2.1 General settings 

The IRC is located south of the State of 
Espírito Santo, covering a drainage area of nearly 
5,927 km2, with approximately 17 municipalities 
from this State and a small section of a municipality 
of Minas Gerais (the Lajinha County). According 
to the Espírito Santo State Water Resources Plan 
(ESPÍRITO SANTO 2018), there is a tendency 
for growth in industrial production in this region 
due to the petroleum exploration of pre-salt and 
the dimension stone production. The Cachoeiro de 
Itapemirim Municipality is a prominent Brazilian 
producer and exporter of dimension stones. The 
municipal headquarters, located in the central part 
of the IRC, is the principal city of the south, where 
most of the population, nearly 185,000 inhabitants, 
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is concentrated (BRASIL 2022). Agriculture, 
livestock, and small cities predominate in the rest 
of the area.

According to the Köppen climate 
classification, the study area is under a dry 
winter tropical climate (Aw) and a high-altitude 
subtropical climate with mild summer (Cwb), and 
dry winter and hot summer (Cwa) (ALVARES 
et al. 2013). A fragment of the climate map 
of Espírito Santo (ESPÍRITO SANTO 1999) 
shows the distribution of climate zones in IRC, 
dividing the region into hot, mild, and cold lands, 
associated with dry, transitional, and rainy lands 
(Figure 2). An association between temperature 
distribution and rainfall and the region´s relief 
can be observed, i.e., the ridged land areas are 
cooler and rainier. In contrast, the central portion 
of the catchment, with less rough terrain, is hotter 
and drier.

2.2 Geological and hydrogeological settings

Most of the geological framework in ICR is 
composed of crystalline rocks, mainly metamorphic 

(gneisses) and intrusive igneous (granitoid) rocks 
(Figure 3). Locally, mylonites, marbles, granulites, 
and charnockites also occur (VIEIRA et al. 2018, 
SANTIAGO et al. 2020). The sedimentary covers 
comprise semi-consolidated sediments of the 
Barreiras Formation (WEST & MELO 2020, 
SANTIAGO et al. 2023) and unconsolidated 
colluvial, fluvial, and coastal deposits.

The relief in the region is generally rugged, 
with ridges and hills belonging far north of 
Mantiqueira Mountain Range (CALEGARI 
et al. 2021) that compounds the Mantiqueira 
Morphoestructural Sector (PEIXOTO-OLIVEIRA 
et al. 2018), where the upper part of the Itapemirim 
River Catchment is located – Upper IRC (Figure 1). 
In the middle part of IRC, referred to as Cachoeiro 
Sector (PEIXOTO-OLIVEIRA et al. 2018), the 
relief is smoother, and a sea of hills landscape 
predominates. Near the coastline, in the Coastal 
Sector (PEIXOTO-OLIVEIRA et al. 2018), the 
crystalline rocks are covered by the Barreiras 
Formation, where hills with flat tops of the 
Coastal Tables occur (GATTO et al. 1983). Fluvial 

FIGURE 1 – Location of the Itapemirim River Catchment with the occurrence areas of the Crystalline and 
Sedimentary aquifer systems according to NEVES et al. (2021), and geomorphological sectors, according to 
PEIXOTO-OLIVEIRA et al. (2018) (Sectors - 1: Mantiqueira, 2: Cachoeiro, and 3: Litorâneo) (Cities - IR: Iru-
pi, G: Guaçuí, A: Alegre, MF: Muniz Freire, JM: Jerônimo Monteiro, CI: Cachoeiro de Itapemirim, I: Itapemi-
rim, M: Marataízes, MS: Mimoso do Sul, C: Castelo, CC: Conceição de Castelo, V: Venda Nova do Imigrante).
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FIGURE 2 – Climatic zones in the south region of Espírito Santo State (adapted from ESPÍRITO SANTO 1999) 
(Zones - 1: dry and hot lands; 2: hot lands in wet-dry transition; 3: rainy lands with mild temperatures; 4: rainy 
and dry lands with mild temperatures; and 5: cold-wet lands) (Cities: capital bold letters inside the map - see 
legend figure 1).

FIGURE 3 – Simplified geological map of the Itapemirim River Catchment, with lithological units of the 
crystalline basement (VIEIRA et al. 2018) and the sedimentary covers (PEIXOTO-OLIVEIRA et al. 2018) 
(1: alluvial deposits; 2: Barreiras Formation; 3: granitoids; 4: charnockites, 5: weakly foliated granitoids; 6: 
orthogranulites; 7: orthogneisses; 8: gneisses with quartzite, calciosilicates and amphibolites; 9: gneisses with 
amphibolites; 10: gneisses and quartzite; 11: gneisses and amphibolites; 12: gneiss and kinzingites; 13: biotite 
schist with metavolcanic rocks and quartzitic gneisses;14: mylonite gneisses; and 15: granulites) (Cities: capital 
bold letters inside the map - see legend figure 1).
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sediments generally occur aligned along the main 
drainage channels and compound wider bodies 
close to the coast zone. The morphostructural 
sectors are delineated by structural lineaments, 
and this arrangement conditions the sedimentary 
deposition area. Therefore, the geomorphology 
also controls the distribution of the aquifer systems. 

In the Crystalline Basement area, where 
CAS occurs, groundwater flows at the fresh rock´s 
discontinuities (joints, faults, and foliation plans) 
and in the weathered mantle above it. On the other 
hand, the Sedimentary Aquifer System (SAS) is 
a porous aquifer system that occurs in areas with 
sedimentary covers, where groundwater flows 
through intergranular spaces.

The distribution of the hydrochemical 
types in the region follows the geological and 
geomorphological sectors: in the Upper IRC, 
waters are calcic bicarbonate and calcic-magnesian 
bicarbonate, while in the Middle IRC, the sodium 
chlorinated and sodium bicarbonate types 
predominate (NEVES et al. 2021). In the Upper 
IRC, the composition of groundwater is controlled 
mainly by the weathering of silicate rocks. On the 
other hand, in the Middle IRC, the hydrochemical 
characteristics are also influenced by the presence 
of carbonate rocks, such as marbles and calcium-
silicate rocks. The climatic conditions, with 
higher temperatures and lower air humidity in the 
Middle IRC, which is topographically lower, also 
cause mineral enrichment of groundwater due to 
evaporation of the water that infiltrates the soil.

Studies about isotopes in groundwater by 
OLIVEIRA et al. (2022) show that the Upper 
IRC is an important recharge area. Groundwater 
flows to the central part of the Middle IRC, where 
isotopic signatures similar to rain indicate a short 
renovation time. Still, waters with longer residence 
time also occur, suggesting a regional recharge. 
Indeed, the residence time of groundwater in 
crystalline terrains can vary considerably in nearby 
locations; there are waters 80 years old side by side 
with waters 2.5 years old about the infiltration time 
in the aquifer system (OLIVEIRA et al. 2022), 
highlighting that diverse recharge sources exist, 
with regional and local flows, besides mixtures 
from diverse sources. In crystalline terrains of 
Sri Lanka, PRIYADARSHANEE et al. (2022) 
describe a similar situation, where sedimentary 
aquifers are recharged by waters with residence 
time older than 50 years that infiltrated in higher 
lands of crystalline rocks and percolated along 
regional flow lines formed by fractured zones.

3 MATERIALS AND METHODS

Groundwater samples were collected in 38 
wells that exploit the Crystalline Aquifer System 
(CAS) in the area of IRC (Figure 4). Well depth 
varies from 12 to 200 m, with an average of 72 m. 
This information was collected through interviews 
with owners during fieldwork, as these data are 
rarely in the official register.

Two or three samples were collected at 
the same sampling points at different moments, 
compounding repetitions. However, it was 
possible to get just one sample in some wells due 
to difficulties accessing some wells (generally in 
private properties). Thus, 62 groundwater samples 
were collected after analyzing the field parameters. 
In each sampling work, 1 liter of water was 
collected and sent to be stored in the laboratory. 
Sample collection and storage were carried out 
in accordance with the methods of NBR 9898/87 
of the Brazilian Association of Technical Rules 
(ABNT 1987). Care was taken to avoid collecting 
stagnant water, always seeking collection in 
pumping wells and locations as close as possible 
to the well’s outlet pipe. The bottles underwent a 
rigorous cleaning process with nitric acid solution 
and ultrapure water. 

On the field, using multiparameter equipment 
Hanna Instruments (model HI9829-01042), it was 
measured the pH, electrical conductivity (EC) (in 
µS cm-1) and content of total dissolved solids (TDS) 
(in mg L-1); the turbidity (Turb) (in Formazine 
Turbidity Unit – FTU) was measured with portable 
turbidimeter Hanna Instruments (model HI93703). 
Samples were filtered with 0.45 μm membrane, 
acidified with ultrapure nitric acid (HNO3) until 
reaching a pH lower than 2.0, and refrigerated until 
further analyses were conducted.

Optical emission spectrometry with 
inductively coupled plasma (ICP-OES) was used 
to measure the content of Ca, Mg, Na, Fe, and Mn 
(in mg L-1), and inductively coupled plasma mass 
spectrometry (ICP-MS) was used to determine 
Pb, Zn, Cd, and Co (in mg L-1). The data were 
compared with the maximum permitted limit 
(MPL) for different types of use, according to the 
Resolution 396/2008 of the National Environmental 
Council (Conselho Nacional de Meio Ambiente - 
CONAMA) (BRASIL 2008), while the Turbidity 
(turb.) has the maximum values determined by the 
Ordinance 888/2021 of Healthy Ministry (BRASIL 
2021).  
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4 RESULTS

Table 1 shows the descriptive statistics 
of the physical and chemical parameters of 
groundwater collected in tubular wells located in 
crystalline terrains of IRC (the raw data can be 
seen in the Supplementary Material). The values 
were compared with the maximum permitted limit 
(MPL) of Resolution 396/2008 of CONAMA 
(BRASIL 2008), which defines the classification 
of groundwater depending on the types of use. The 
Ca and Mg don’t have MPL, as they constitute 
mineralizing elements of natural waters. On the 
other hand, the TDS, Na, Fe, and Mn are regulated 
and were above the MPL in at least one of the types 
of use previewed in the normative. The Cd, Co, Pb, 
and Zn contents are also regulated, but they were 
not registered in levels above the MPL for any of 
the types of use.

Table 2 presents the correlation coefficient 
between the analyzed parameters. The levels of Ca, 
Na, Mg, and Zn show a medium to high positive 
correlation, and these elements are responsible for 
the increase in TDS and EC. Turbidity and dissolved 
Fe, Mn, and Co contents form another group of 
parameters with a high positive correlation.

The parameters that were below the MPL 
according to CONAMA (BRASIL 2008), that is, 
Fe, Mn, TDS, and Na, in addition to turbidity, 
regulated by Ordinance 888/2021 of the Ministry 

of Healthy (BRASIL 2021), were plotted on a 
map (Figure 5), to verify the spatial distribution 
of variables that exceeded the limit of, at least, 
one type of water use. Notably, the group formed 
by Fe, Mn, and turbidity (which shows a high 
correlation according to table 2) does not follow a 
defined distribution pattern of values. In contrast, 
the high levels of TDS and Na are concentrated in 
the central portion of IRC.

5 DISCUSSION

The high concentrations of TDS in the 
central part of IRC (Figure 5) indicate salinized 
waters that have become unappropriated for human 
consumption at some points. This enrichment 
follows the increase of EC and the levels of Ca and 
Mg, which are natural groundwater components 
generally provided by the weathering of silicates 
and/or carbonates (HEM 1985). The Na also 
contributes to increasing the TDS in these waters, 
and both occur above the MPL of Resolution 
396/2008 of CONAMA, mainly in the central 
portion of the IRC.

The most mineralized waters in this portion 
of the catchment (Middle IRC), contrasting to 
the higher portions where mineralization is low, 
have already been described by NEVES et al. 
(2021). According to these authors, in the Upper 

FIGURE 4 – Location of the wells that served as groundwater sampling points in the Itapemirim River Catch-
ment (after NEVES et al. 2021). (Cities: capital bold letters inside the map - see legend figure 1).
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IRC, calcic bicarbonate and calcic-magnesian 
bicarbonate waters occur, while in the Middle 
IRC, sodium-chlorinated and sodium-bicarbonate 
waters predominate. These variations are related 
to the region´s geomorphological, lithological, and 
climatic variations, besides the longer residence 
time of groundwater (OLIVEIRA et al. 2022). 
A similar pattern was observed in other regions 
of crystalline terrains (e.g., KUMAR & JAMES 
2016) once the rock-water interaction commonly 
increases the concentration of Ca, Mg, Na, and 

K in the direction of groundwater flow, i.e., from 
the higher altitudes to the lower parts of the 
catchment. This fact is due to the change in the 
hydraulic gradient, which decreases as the relief 
becomes flatter. In crystalline terrains, the recharge 
can come from the meteoric water that infiltrates 
distant sites at higher altitudes and flows through 
discontinuities in the crystalline basement when 
they form regional flow zones. 

The Fe and Mn contents, together with the 
turbidity values, follow a distribution pattern very 

Parameter unit medium median stand dev. min. v. max. v. MPLs Res. CONAMA 396/2008
CH CA IR RE

Turb FTU 6.01 0.10 22.38 0.00 122.67 --- --- --- ---
pH --- 6.80 6.63 0.66 4.96 8.09 --- --- --- ---
EC µS cm-1 470.07 241.67 481.57 13.44 1,712.33 --- --- --- ---

TDS mg L-1 285.23 130.49 321.87 5.81 1,254.33 1,000 --- --- ---
Ca mg L-1 35.42 18.10 43.22 0.22 182.75 --- --- --- ---
Mg mg L-1 4.83 1.03 9.14 0.00 38.44 --- --- --- ---
Na mg L-1 47.30 16.08 62.67 0.96 231.98 200 --- --- 300
Fe mg L-1 0.59 0.01 2.60 0.00 16.03 0.30 --- 5.00 0.30
Mn mg L-1 0.41 0.01 1.47 0.00 7.01 0.10 0.05 0.20 0.10
Co µg L-1 0.32 0.00 1.20 0.00 8.37 --- 1,000 50 ---
Cd µg L-1 0.03 0.00 0.04 0.00 0.13 5.00 50 10 5
Pb µg L-1 0.52 0.41 0.53 0.00 2.34 10 100 5,000 50
Zn µg L-1 4.87 0.00 16.06 0.00 118.48 5,000 24,000 2,000 5,000

TABLE 1 – Groundwater physical and chemical parameters in the crystalline terrains of the Itapemirim River 
Catchment (Turb: turbidity, EC: electrical conductivity, TDS: total dissolved solids, MPL: maximum permitted 
limit, CH: consumption by humans, CA: consumption by animals, IR: irrigation, RE: recreation).

TABLE 2 – Correlation between groundwater quality parameters in crystalline rocks of the Itapemirim River 
Catchment (EC: electrical conductivity, Turb.: turbidity, TDS: total dissolved solids). Color legend: blue = low 
correlation, orange = intermediate correlation, red = high correlation 

  pH EC TDS Turb Ca Mg Na Fe Mn Pb Zn Cd Co 
pH 1.0 0.2 0.1 -0.1 0.1 0.0 0.2 -0.2 -0.1 -0.2 0.4 -0.4 -0.3
EC 1.0 0.7 0.0 0.5 0.2 0.8 -0.2 -0.1 0.1 0.8 -0.3 0.1

TDS 1.0 0.0 0.9 0.4 0.9 -0.2 -0.1 0.0 0.8 -0.1 0.1
Turb 1.0 0.0 0.0 -0.1 0.4 0.8 -0.1 -0.3 0.1 0.9
Ca 1.0 0.4 0.9 -0.2 -0.1 0.0 0.7 0.0 0.1
Mg 1.0 0.1 -0.1 -0.1 0.3 0.5 0.0 -0.1
Na 1.0 -0.2 -0.2 0.0 0.9 -0.2 0.1
Fe 1.0 0.8 -0.1 -0.1 -0.1 0.1
Mn 1.0 -0.1 -0.1 0.1 0.9
Pb 1.0 -0.1 -0.3 0.0
Zn 1.0 -0.1 -0.1
Cd 1.0 0.1
Co                         1.0
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different from the parameters discussed (Ca, Mg, 
Na, and TDS) once higher values are disseminated 
in various sites of the catchment, including the 
Upper IRC and not only in the central portion 
(Figure 5). Co is another metal that shows similar 
behavior to Mn, with a high positive correlation. 
Although the Co content is below the MPL, its 
presence indicates restrictive points related to water 
use due to the local solubilization of potentially 
dangerous metals that accompany it, such as Pb, 
Zn, Cu, Ni, and Ba (HEM 1985).

The association between Mn and Fe in 
groundwater is widespread, as both participate in 
redox processes during mineral weathering (HEM, 
1985). When the divalent Mn is released in an 
aqueous solution during weathering, it is more 
stable to oxidation than the ferrous Fe. However, 
if it comes into contact with the atmosphere, it will 
precipitate as an oxide crust, forming incrustation 
that usually contains a substantial amount of co-
precipitated iron. HOMONCIK et al. (2010) 
report that the behavior of Fe can interfere with 
the solubility of Mn, as it dissolves when the Fe 
is reduced and, conversely, when the Fe oxides are 
formed, the Mn is sorbed into ferrous minerals. 

Several works show that Fe and Mn in 
groundwater can be supplied by the rock or 
sediment that compounds the aquifer. Fe can 
be provided by mafic minerals in igneous and 
metamorphic rocks, such as pyroxene, amphibole, 
biotite, magnetite, and, mainly, olivine (HEM 
1985). However, these elements are insoluble 
in oxidized form and will only be present in 
groundwater when environmental conditions are 
reducing (HAMER et al. 2020).

Therefore, the simple presence of these 
minerals in the rock is not a determinant factor 
for their solubilization, which depends on the 
redox conditions and environmental pH. Seasonal 
water level fluctuations in shallow sedimentary 
aquifers explain changes in redox conditions at the 
phreatic and vadose zone interface, promoting the 
cyclic dissolution of ferrous and ferric minerals 
(USMAN et al. 2021). CARRETERO & KRUSE 
(2015) studied the origin of Fe and Mn in a coastal 
sedimentary aquifer in Argentina and related them 
to the presence of pyroxene, amphibole, biotite, Fe 
oxy and hydroxides, and volcanic material. The 
authors did not observe relationships between the 
concentration of metals, nor between these and the 
pH or the Eh, attributing the fact to a redox balance.

The content of organic matter can cause 
environmental changes that promote the 

solubilization of Fe and Mn (STENVIK et al. 
2022), in addition to ammonium and high turbidity 
associated with those metals (ADEYEYE et al. 
2020). Anaerobic bacteria play an efficient role in 
reducing iron oxides (KHOZYEM et al. 2019), and 
the recharge from acid rainwater is also a factor to 
be considered as a contributor to the solubilization 
and enrichment of these metals in groundwater 
(USMAN et al. 2021).

Some authors point to residence time and 
water level fluctuations as factors that favor the 
dissolution of Fe and Mn in sedimentary aquifers 
(ZHANG et al. 2020) and in crystalline ones 
(ADEYEYE et al. 2020). However, in the studied 
area, the residence time influences the concentration 
of the primary ions, but not of Fe and Mn, that are 
considered trace metals in groundwater. The flux 
model of fractured aquifers presented by BOCHET 
et al. (2020) can explain the local occurrence and 
apparently random of waters rich in Fe and Mn in 
fractured aquifers, contrasting with the mineral 
enrichment of waters towards low topographically 
portion. The authors propose that the intersections 
between sets of fractures in the subsurface form 
points with fluctuating oxidizing and reducing 
conditions that, together with the action of 
microorganisms, can locally and sporadically 
favor the solubilization or precipitation of metals. 
Therefore, the wells that produce waters rich in Fe 
and Mn can be randomly distributed in an area, and 
a single well can find solutions with different redox 
potentials at various depths (HEM 1985).

It is believed that the Fe and Mn in 
groundwater (influencing turbidity) of several 
wells randomly distributed in the IRC are natural 
and originate from oxyhydroxides precipitated in 
discontinuities of crystalline rocks through which 
the recharged water flows. Occurrences of high-
content Mn ore in the High IRC were studied by 
BELLON et al. (2019) and attributed to processes 
of supergene enrichment, while CALEGARI et 
al. (2020) show the occurrence of  pellicles of 
Mn oxides (that are associated with Fe) filling 
discontinuities in the rocks, as faults and fractures 
in the south of Espírito Santo. 

The Fe and Mn contents make the water 
unsuitable for different types of use at various 
points distributed randomly throughout the IRC. 
Although Fe is an essential element in animal 
and plant metabolism, in excess, it can form 
oxyhydroxide precipitates, which give color to the 
water, stain clothes, and form incrustation in pipes; 
therefore, it is undesirable in the domestic and 
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industrial supply. Studies have shown that Mn can 
cause neurotoxic effects in children (BOUCHARD 
et al. 2007) and be associated with the presence of 
other dangerous metals in groundwater (BONDU 
et al. 2018). Some authors (e.g., ZHANG et al. 
2020, USMAN et al. 2021) draw attention to the 
possibility of As dissolving in groundwater if it 
is adsorbed on Fe and Mn minerals, worsening 
water quality conditions. As was not analyzed in 
this work, and we do not expect to find this type of 
contaminant in the studied area; nevertheless, its 
investigation is recommended in locals with Fe and 
Mn anomalies, given the danger of this element. 
Another parameter that has yet to be evaluated is 
fluorine, as this anion has already been identified 
in high concentrations in groundwater from 
crystalline terrains (e.g., HALLET et al. 2015).

Although various components mentioned 
above may be of natural origin, coming from 
the rocks that form the aquifers, it is important 
to highlight that human interference needs to be 
considered. For example, corrosion of an old metal 
well casing can add Fe to the pumped water (HEM 
1985). Even if a treatment is applied to reduce 
the dissolved Fe content, making the water more 
palatable, these wells are subject to the growth of 
ferrous bacteria, which are microorganisms that 
feed on Fe.  These bacteria can coat the inside 
of the casing or any other submerged part of the 
plumbing. Furthermore, monitoring water quality 
to verify suitability for the different types of use 
provided for in environmental standards is a 
routine that needs to be followed by management 
institutions and water users.

6 CONCLUSIONS

Groundwater in crystalline terrains of the 
South of Espírito Santo State contains Cd, Co, Pb, 
and Zn within the limit allowed for the different 
types of use provided for in CONAMA Resolution 
396/2008. On the other hand, according to the 
resolution above, the levels of Fe, Mn, and Na, 
in addition to turbidity and TDS, are above the 
maximum permitted limit for some uses.

The distribution pattern of the parameter 
values throughout the studied area varies in 
different ways. The increase in TDS and Na, as well 
as the other essential components of groundwater, 
obey the geomorphological, lithological, and 
climatic control, with enrichment in the central 
portion of the river catchment. Differently, Fe, Mn, 
and turbidity present anomalous values randomly 

distributed throughout the basin, probably due to 
the pedogenic enrichment of lateritic profiles and 
local structural control. The lack of adequate well-
maintenance probably contributes to these changes.
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