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ABSTRACT

Climate changes are often regarded as the major factor leading to the observed 
increases in drought frequency and intensity worldwide. Considering the negative 
effects triggered by this environmental hazard, the goal of this study was to detect 
and quantify changes in the probability of drought events in the State of São Paulo, 
Brazil. The study was based on rainfall data from the NASA-POWER project, which 
is capable of providing meteorological series with more than 30 years of record. The 
drought events were quantified through the Standardized Precipitation Index (SPI), 
which was calculated by means of a probability-based nonstationary method designed to 
improve the interpretation of the index estimates under climate change conditions. The 
results found in this study indicated that the frequency of meteorological droughts has 
increased over the last years. This statement is particularly true for the months of March 
and April (transition periods between the regional rainy and dry seasons). Increases in 
drought frequency were also observed in the months of December and January (rainy 
season), particularly in the eastern region of the state, where the Cantareira reservoir 
system is situated. From the agro-environmental resource management viewpoint, 
we concluded that there is an increase in the risk of meteorological droughts in the 
State of São Paulo. From an academic viewpoint, this study provided further evidence 
supporting the hypothesis that climate change has increased drought frequency and 
intensity in several regions of the world.

Keywords: Standardized Precipitation Index; climate risks; nonstationary method.

RESUMO

ELEVAÇÕES NA FREQUÊNCIA DE OCORRÊNCIA DE SECAS METEO-
ROLÓGICAS NO ESTADO DE SÃO PAULO SOB CONDIÇÕES DE MUDANÇAS 
CLIMÁTICAS. Elevações na frequência e intensidade da seca vem sendo observa-
das em diversas regiões do planeta, sendo que as mudanças climáticas são frequen-
temente apontadas como uma das principais responsáveis por essas alterações. Con-
siderando os severos impactos causados por essa adversidade ambiental, o objetivo 
desse estudo detectar e quantificar possíveis alterações na probabilidade de ocor-
rência dos eventos de seca meteorológica no Estado de São Paulo. Foram utilizados 
dados de precipitação pluvial do projeto NASA-POWER, o qual é capaz de fornecer 
séries com mais de 30 anos. Os eventos de seca foram quantificados com base no 
Índice Padronizado de Precipitação (SPI), calculado por meio de método probabilís-
tico não estacionário (“the four-step algorithm”) especialmente desenvolvido para 
aprimorar a interpretação do SPI sob condições de mudanças climáticas. Os resul-
tados apontaram elevações na frequência da seca meteorológica com picos máxi-
mos em meses de transição entre as estações chuvosa e seca, como março e abril. 



Martins et al.

2

Os meses de dezembro e janeiro (auge do período chuvoso) também apresentaram 
elevações na ocorrência dessa adversidade ambiental, com predomínio nas porções 
leste de São Paulo, incluindo o Sistema Cantareira. Sob o ponto de vista de gestão 
de recursos agroambientais, conclui-se que há aumento no risco climático associado 
à ocorrência da seca no estado de São Paulo. Sob o ponto de vista acadêmico, esse 
trabalho amplia o rol de evidências que suportam a hipótese de que as mudanças 
climáticas estejam afetando a frequência e a severidade dos déficits de precipitação 
em diversas partes do planeta.

Palavras-chave: Índice Padronizado de Precipitação; risco climático; método não 
estacionário.

1 INTRODUCTION

Drought is a natural hazard that has 
been observed in virtually all regions of the 
globe. Several studies carried out across the 
world (e.g. DAI 2012 and BLAIN et al. 2022) 
have described increases in its frequency and 
intensity. This statement particularly holds in 
the state of São Paulo, Brazil, where recurrent 
drought events have been observed over the 
last years. (PEREIRA et al. 2018). Among 
these episodes, the 2013-2015 water crises 
affected the metropolitan region of São Paulo, 
which is one of the most populated areas on the 
planet (NOBRE et al. 2016).

Among the factors leading to the changes 
in the probability of this hazard, the current 
climate change has been often regarded as 
the main responsible for the recurrent rainfall 
deficits, which are defined by observed 
precipitation totals considerably lower than 
that expected for the region and period. In this 
context, studies such as SENEVIRATNE et al. 
(2012), TRENBERTH et al. (2014), ERFRAIN 
et al. (2017), MARENGO et al. (2017) state 
that the drought events in South America may 
intensify over the next years due to its potential 
to respond drastically to excessive drying 
and warming. Studies based on long-term 
meteorological series (DUFEK & AMBRIZZI 
2007) also observed significant changes in the 
temporal variability of the rainfall events in 
the state of São Paulo. In addition, PEREIRA 
et al. (2018) observed increasing trends in the 
frequency of meteorological droughts (defined 
by rainfall deficits), which may lead to crop 
failures in the state. 

One noteworthy aspect of the study 
of PEREIRA et al. (2018) is that it applied 
the Standardized Precipitation Index (SPI, 
MCKEE et al. 1993), which is a probability-
based method. The SPI has been widely 
used in virtually all drought monitoring 
systems (DMS) around the globe. The 
World Meteorological Organization (WMO) 
recommends the SPI to quantify the severity 
of rainfall deficits in several regions on Earth 
(HAYES et al. 2011). However, the study of 
PEREIRA et al. (2018) has two shortcomings. 
First, the study is based only on long rainfall 
records (longer than 60 years) obtained from 
surface weather stations. Although this 
strategy allowed the exclusive use of observed 
historical data, it led to the use of few weather 
stations across the state. The reason for this is 
the low number of long meteorological records 
in the state and problems related to data 
quality. Consequently, the study lacks spatial 
representation. The second shortcoming is the 
fact that PEREIRA et al. (2018) only detected 
changes in the frequency of drought events. 
The authors did not attempt to quantify the 
rate of these changes.  

The first shortcoming may be overcome 
with remote sensing data, which has presented 
an increasing use in environmental studies. 
The accuracy of these data sources has 
increased over the years. In this context, the 
NASA POWER Project (National Aeronautics 
and Space and Administration Prediction of 
Worldwide Energy Resource; https://power.
larc.nasa.gov/) has gained popularity as a 
suitable meteorological data source (BAI et 
al. 2010, MONTEIRO et al. 2018, DUARTE 
& SENTELHAS 2020). Different from other 

https://power.larc.nasa.gov/
https://power.larc.nasa.gov/
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FIGURE 1 – Köppen-Geiger classification system (ALVARES et al. 2013), São Paulo, Brazil.

sources, it has daily rainfall data dating back 
to 1891. Accordingly, this project meets the 
30-year period required for calculating the 
SPI (MCKEE et al. 1993). Moreover, NASA 
POWER data has shown good performance 
in estimating rainfall data throughout the 
world. AL-KILANI et al. (2021) assessed the 
NASA POWER’s performance in Jordan. They 
found relatively high correlations between 
observed rainfall data and NASAPOWER 
data (0.67≤R2≤0.91). RODRIGUES & BRAGA 
(2021) also found high correlations between 
weather station data for maximum and 
minimum air temperature and solar radiation 
and their corresponding NASA POWER data 
in Alentejo, Portugal (R2>0.82). With regards 
to the second shortcoming, the study of 
BLAIN et al. (2022) developed a computational 
algorithm that improves, in probabilistic terms, 
the interpretation of the SPI estimates under 
changing climate conditions. This algorithm, 
described in further detail in section 3, is based 
on nonstationary parametric distributions 
capable of detecting and quantifying the 

climate change effects on the probability of 
drought events.

In this context, and under the hypothesis 
that the current climate changes are affecting 
the frequency and severity of rainfall deficits 
in the state of São Paulo, the goal of this study 
was to detect and quantify changes in the 
probability of meteorological drought events 
in this state using rainfall data from the NASA 
POWER project.

2 METEOROLOGICAL DATA

The state of São Paulo (Figure 1) is 
situated between 26°S – 19°S and 54ºW – 
46°W (crossed by the Tropic of Capricorn). It is 
the major industrial region of Brazil, with the 
highest population density and gross domestic 
product in the country (IBGE 2022). This state 
is also a major player in the agroindustry and the 
world-leading producer of sugarcane and citrus 
(CONAB 2022). Accordingly, the state of São 
Paulo is highly dependent on water resources. 
28, 47, and 21% of this natural resource is 
used by agriculture, urban consumption, and 



Martins et al.

4

industry, respectively (DAEE 2020). The rainy 
season occurs in the Austral summer, when 
rainfall amounts are larger than the potential 
evapotranspiration totals (BLAIN et al. 
2018). The rainiest months are December and 
January, when rainfall frequency distributions 
approach the Gaussian shape (BLAIN et 
al. 2007). As pointed out by BEN-GAI et 
al. (1998), this distributional shape is often 
observed in equatorial climates. The state also 
has a distinct dry season (July and August), 
when the rainfall frequency distributions 
may assume a exponential shape. The latter 
distributional shape is often observed in arid 
or semi-arid climates (BEN-GAI et al. 1998). 
According to the Köppen-Geiger classification 
system (ALVARES et al. 2013), the state has 
eight distinct climates conditions: Af (Tropical 
Rainforest); Am (Tropical Monsoon); Aw 
(Tropical Dry winter); Cfa (Temperate No dry 
season Hot summer); Cf b (Temperate No dry 
season Warm summer); Cwa (Temperate Dry 
winter Hot summer); Cwb (Temperate Dry 
winter Warm summer); and Cwc (Temperate 
Dry winter Cold summer).

This study used rainfall monthly 
amounts (1981-2022) from the NASA-POWER 
project (National Aeronautics and Space 
and Administration Prediction of Worldwide 
Energy Resource; https://power.larc.nasa.
gov/) with a spatial resolution of 0.5º latitude 
and 0.625º longitude. As previously described, 
this databank is capable of providing 
meteorological series with more than 30 years 
of continuous records. Thus, drought indices, 
such as the SPI (MCKEE et al. 1993), can be 
obtained. The NASA-POWER is an open data 
source and was downloaded using the R NASA 
POWER API Client v. 4.0.9 package (SPARKS 
2022). 

3 METHODS 

The SPI is perhaps the most used drought 
index in the world. It is a probability-based 
method and the frequency distributions of 
its estimates are expected to have a standard 
normal distribution. In other words, any SPI 
time series is expected to have a zero mean and 
unit variance (HAYES et al. 1999, WU et al. 
2007, BLAIN 2012). This invariability in the 

time-space domain is the result of a concept 
adopted by the SPI regarding meteorological 
drought, that is: a rainfall deficit occurs when 
the rainfall amount observed in a particular 
region and period is below the corresponding 
historical median value. In probabilistic terms, 
this median value corresponds to a cumulative 
probability of 0.5. From a climatological 
perspective, for both wet and dry regions/
periods this median value is taken as the 
climatological expected value regardless its 
magnitude. Accordingly, when the cumulative 
probability of a particular rainfall amount is 
lower than 0.5, the SPI will assume negative 
values, which in turn, indicates a rainfall 
deficit and potentially a drought event. The 
lower this cumulative probability, the smaller 
the corresponding SPI estimate and the more 
extreme the drought event.

The SPI can be calculated at several 
time scales, which allows this index to 
provide relevant information for monitoring 
meteorological droughts (defined by rainfall 
amounts lower than the normal value), 
agricultural droughts (shortage of available 
water for plant growth), and hydrological 
droughts (associated with a deficit in the 
volume of the water supply). The SPI calculated 
at the 1- and 3-month time scales is often 
used to assess meteorological drought events 
(BLAIN & BRUNINI 2007). 

Considering the above-mentioned 
drought definitions, the SPI calculation 
algorithm starts by fitting a parametric 
distribution to long-term rainfall series 
(GUTTMAN 1998). Several distributions 
can be used for such a purpose, however the 
2-parameter gamma distribution [g(x)] – also 
adopted in this study – is the most common 
choice (MCKEE et al. 1993, HAYES et al. 
1999, WU et al. 2007, STAGGE et al. 2015). 
This function is then used to calculate the 
cumulative probability of the rainfall amounts, 
which in turn are transformed into the standard 
normal distribution [N(0,1)] by a rational 
transformation proposed in ABRAMOWITZ 
& STEGUN (1965). Equations 1 to 4 describe 
the SPI algorithm.

H(x) = q+1(1-q) g(x)	  (1)

https://power.larc.nasa.gov/
https://power.larc.nasa.gov/
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TABLE 1 – SPI Classification system. 

SPI Category Cumulative probability Expected frequency 

SPI ≥ 2.00 Extreme Wet 0.977 – 1.000 2.3%

1.50 < SPI ≤ 2.00 Severe Wet 0.933 – 0.977 4.4%

1.00 < SPI ≤ 1.50 Moderate Wet 0.841 – 0.933 9.2%

-1.00 < SPI ≤ 1.00 Near Normal 0.159 – 0.841 68.2%

-1.50 < SPI ≤ -1.00 Moderate Dry 0.067 – 0.159 9.2%

-2.00 < SPI ≤ -1.50 Severe Dry 0.023 – 0.067 4.4%

SPI ≤ -2.00 Extreme Dry 0.000 – 0.023 2.3%

 	
(2)

Where q is the probability of 0 (rain=0); 
nz is the number of periods with rain=0 and n is 
the sample size.

H(x) is then transformed into a variable 
with standard normal distribution, leading to 
the SPI final value (equations 3 and 4).

, 	 (3)

for 0 < H(x) ≤ 0.5	

, 	 (3.1)

for 0 < H(x) < 0.5,	

where:

, for 0 < H(x) ≤ 0.5	  (4)

, for 0.5 < H(x) ≤ 1	 (4.1)

c0 = 2.515517; c1 = 0.802853; c2 = 0.010328; d1 = 
1.432788; d2 = 0.189269; d3 = 0.0013

Once the normal transformation is 
achieved (equations 3 and 4), the SPI estimates 
representing dry and wet events will present 
the frequency of occurrence described in table 
1. These dry/wet categories were specified as 

a function of the cumulative probability of 
the rainfall amounts. At this point, it is worth 
mentioning that for rainfall series in which 
the zero value has a probability of occurrence 
close to or higher than 0.5, the equiprobabilistic 
transformation intended by the SPI algorithm 
may not be met (WU et al. 2007 and BLAIN 
2012). In such cases, this probability-based 
index may fail to quantify drought events. 
This condition is frequently observed when the 
SPI is calculated at short time scales in arid 
or semi-arid climates or those with a distinct 
dry season (WU et al.  2007). Considering the 
climate conditions of the state of São Paulo, the 
SPI was calculated in this study at the 1- and 
3-month time scales.

The analysis of equations 1 to 4 and 
table 1 indicates that the SPI was originally 
developed under a stationary approach in which 
the parameters of the parametric distribution 
(e.g., 2-parameter gamma) do not change over 
time. In other words, in its original version, 
this drought index assumes that the probability 
of rainfall deficits and surplus remain fixed 
over time (RUSSO et al. 2013, LI et al. 2015, 
RASHID & BEECHAM 2019). However, there 
have been observed changes in the frequency 
and severity of drought events in virtually all 
regions on the planet (STRZEPEK et al. 2010, 
DAI 2012, SPINONI et al. 2019). These changes 
violate the stationary assumption (COLES 2001, 
CHENG et al. 2014, ZHANG et al. 2004) and 
potentially modify the values of the expected 
frequencies presented in table 1. In this context, 
BLAIN et al. (2022) developed a computational 
algorithm based on nonstationary parametric 
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FIGURE 2 – Four-step algorithm developed by BLAIN et al. (2022).

distributions (distributions with time-varying 
parameters). This algorithm is capable of 
detecting signs of climate change in SPI series, as 
well as quantifying their effects in the expected 
frequencies of the dry/wet categories shown 
in table 1. This algorithm has four key-steps 
described in figure 2. This study considerates 
three nonstationary models. 

Model 1 (stationary):

H(x) = q + [1 − q]G(x, μ, σ),

Model 2 (nonstationary; homoscedastic): 

H(x) = q +[1 − q]G(x, μt, σ),

Model 3 (nonstationary):

H(x) = q + [1 − q]G(x, μt, σt),

Where t is the time covariate.
The computational algorithm described in 

figure 2 selects the model that best describes 
the variability of the rainfall series through the 

ΔAICc method (Second order Akaike information 
criterion; BURNHAM & ANDERSON 2004). 
Considering the three models proposed in this 
study, the selection of model 1 indicates the lack 
of significant changes in the rainfall series. While 
selection of model 2 indicates significant signs 
of climate changes that have affected only the 
mean of the series, model 3 indicates that these 
signs have affected both mean and dispersion 
of the rainfall series. The ΔAICc method 
considered the likelihood ratio test calculated at 
the 5% significance level. Further information 
concerning this computational algorithm (Figure 
2) can be found in BLAIN et al. (2022). The 
computational codes, developed in the R-software 
environment, are available at https://github.com/
gabrielblain/Four-Step-Algorithm.

As previously described, the SPI was 
calculated at the 1- and 3-month time scales. 
However, as indicated by equations 3 and 4, 
rainfall series with a high number of rain=0 
may negatively affect the performance of the 
SPI in assessing drought events (WU et al. 

https://github.com/gabrielblain/Four-Step-Algorithm
https://github.com/gabrielblain/Four-Step-Algorithm
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FIGURE 3 – Rate of changes in the frequency of meteorological drought events in the state of São Paulo 
(1-month time scale).

2007) and, consequently, the performance of the 
computational algorithm o (BLAIN et al. 2022). 
Specifically, the empirical probability of zero 
rainfall values in dry months such as July and 
August in the state of São Paulo may be higher 
than the cumulative probabilities corresponding 
to severe or extreme drought categories (Table 1). 
In order to overcome this difficulty inherent to 
the nature of the rainfall frequency distributions 
(bounded to the left by rain=0), the computational 
algorithm considered changes in all SPI-1 values 
lower than zero. Changes in moderate and severe 
drought events were investigated only for the 
SPI-3. The latter time scale represents a 3-month 
moving-window that moves every month. For 
instance, the January SPI-3 takes into account 
the rainfall totals observed in November-
December-January; the February SPI-3 takes 
into account the rainfall totals observed in 
December-January-February. At this time scale 
the empirical probability of rain=0 in the state of 
São Paulo is 0 or slightly higher than 0. Finally, 
it is worth mentioning that under stationary 
conditions, the extreme drought events (Table 1) 

have return periods equal to or larger than 43.5 
years. Considering that the sample size adopted 
in this study is 42 years (1981-2022), we did not 
evaluate changes in these extreme events due to 
their high level of uncertainties.

The last step of this study was to plot maps 
of the state of São Paulo to depict the changes 
in the frequency and intensity of drought events 
as defined in Table 1. We used the R-packages 
ggplot2 (WICKHAM 2016); rgdal (BIVAND 
et al. 2021) and sf (PEBESMA 2018) for such a 
purpose. 

4 RESULTS AND DISCUSSION

The results found in this study (Figures 
3 to 5) are in line with previous studies, which 
described changes in the rainfall patterns of 
the state of São Paulo. These changes were the 
result of increases in the frequency and intensity 
of drought events (DUFEK & AMBRISSI 2007, 
PEREIRA et al. 2018, CORREA et al. 2022). 
For instance, DUFEK & AMBRISSI (2007) 
observed, after 1990, increasing trends in the 
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FIGURE 5 – Rate of changes in the frequency of severe meteorological drought events in the state of São 
Paulo (SPI-3month).

FIGURE 4 – Rate of changes in the frequency of moderate meteorological drought events in the state of São 
Paulo (SPI-3month).
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number of consecutive dry days in the state. This 
result is consistent with those depicted in figure 
3 (SPI-1, March and April) and figures 4 and 5 for 
the SPI-3 of April (Feb-Mar-Apr) and, especially, 
May (Mar-Apr-May). Considering that these 
1-month and 3-month series belong to the period 
between the rainy and dry seasons, we may state 
that the increase in the frequency of drought 
events depicted in figures 3 to 5 is consistent 
with the increase in consecutive dry days found 
by DUFEK & AMBRISSI (2007). 

Considering the SPI-1 series, March –  the 
last month in the rainy season – showed the 
highest increase in the frequency of SPI-1 values 
lower than 0. April and December, respectively, 
are the other two months with the highest 
increase in the probability of occurring SPI-1 
values below zero. For the 3-month series, the 
results depicted in figures 4 and 5 also indicate 
significant increasing trends in the frequency 
of moderate and severe drought events. This 
statement particularly holds for the SPI-3 series 
between December and May.

As previously described, the significant 
signs of climate change found in this study are 
consistent with the results of previous studies, 
which used data from weather stations (e.g. 
DUFEK & AMBRISSI 2007, PEREIRA et al. 
2018, CORREA et al. 2022). In addition, the 
results depicted in figures 3 to 5 are also in 
line with climate change projections derived 
from the regional climate model Eta nested in 
the global climate models HadGEM2-ES and 
MIROC5. Specifically, CHOU et al. (2014) 
applied these two models (Eta-HadGEM2-ES 
and Eta-MIROC5) to describe climate change 
scenarios in South America (2011-2040) under 
two Representation Concentration Pathway: RCP 
4.5 (4.5 W m-2 radioactive force scenario) and 
RCP 8.5 (8.5 W m-2 radioactive force scenario). 
Among the results found by CHOU et al. (2014), 
we highlight the decrease in the rainfall totals 
projected in Southeast Brazil, which is the 
region where the state of São Paulo is situated. 
Similar results were also found by TAVARES et 
al. (2023). These authors assessed several water 
balance parameters under two climate change 
scenarios (warmings of 1.5 °C and 2.0 °C) and 
they found changes to drier conditions in several 
Brazilian areas, including the country’s southeast 
region. 

The changes depicted in figures 3 to 5 can 
also be related to departures in the atmospheric 
circulation patterns and decreases in rainfall 
amounts in the Amazon rainforest (REBOITA 
et al. 2015 and TAVARES et al. 2023). As 
pointed out by YIN et al. (2013) and JOETZJER 
et al. (2013), wildfires and deforestation in 
the Amazon rainforest lead to decreases in  
evapotranspiration rates and may negatively 
impact the rainfall patterns in central-east and 
southeast Brazil. Specifically for the state of São 
Paulo, ARMANI et al. (2022) assessed climate 
change scenarios (2020-2050; RCP 4.5 and RCP 
8.5). These authors used the Eta model nested in 
four general circulation models (HadGEM2-ES, 
MIROC5, CanESM2 and BESM). The spatial 
resolution adopted by ARMANI et al. (2022) 
was 20 x 20 km. The results found in this later 
study are consistent with those of figures 3 to 5 
and described a general reduction in the rainfall 
amounts in the state.  

With regard to the hydrological impacts 
of drought events, this study described 
significant increases in the frequency of this 
environmental hazard in rainy months. This 
change is particularly relevant because it may 
significantly affect water reservoir recharges. In 
this context, we highlight the 2014-2016 water 
crises that negatively affected the population and 
the economy of the metropolitan region of São 
Paulo. As pointed out by (NOBRE et al. 2016), it 
may be regarded as the most severe drought event 
since 1960. Accordingly, the results found in this 
study, along with those of ARMANI et al. (2022), 
indicate the need for rational water management 
in the state, which has shown an increase in its 
water demand. This statement is particularly true 
for the Cantareira water system (metropolitan 
region of São Paulo), which has shown to be 
highly vulnerable to drought events (NOBRE et 
al. 2015).

5 CONCLUSION

Based on a nonstationary probabilistic 
approach, this study assessed changes in the 
probability of meteorological drought events in 
the state of São Paulo between 1981 and 2022. 
The results found from this analysis described 
significant increases in the expected frequency of 
rainfall deficits. These increases are particularly 
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notable in the months of March and April when 
there is a transition between the rainy and dry 
seasons in the state. The months of December 
and January (rainy season) also showed increases 
in the frequency of this environmental hazard, 
mainly in the eastern area of the state (coastal 
region and Cantareira water system). These 
results are in line with previous studies based 
on historical meteorological series and climate 
change projections. 

From a water management perspective, this 
study described significant increases in the risks 
associated with rainfall deficits in the state of São 
Paulo. From an academic viewpoint, this study 
provided new evidence supporting the hypothesis 
that climate changes affect the frequency and 
severity of drought events. It was also observed 
that nonstationary probabilistic models improve 
the statistical analysis of meteorological drought 
events. Therefore, future efforts may verify if 
highly complex nonlinear parametric models are 
capable of improving the results found in this 
study.
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